If you would like a printed copy of any of our back issues, then they can be purchased on Farm Marketplace. You can also download the PDFs or read online from links below.
-
How To Start Drilling For £8K
Clive Bailye’s seed drill of choice is his 6m John Deere 750A , which has been used exclusively for 3-4 seasons. Last year, with an increased acreage, the founder and publisher of this Direct Driller magazine thought a second seed drill was necessary. Having just the one machine was a risk and in a difficult season would mean drilling was delayed. He looked around and found a good condition Horsch CO6 tine drill advertised in Germany.
Words and pictures by Mike DonovanAfter delivery he rebuilt the coulters to a narrow profile so as to reduce soil disturbance. He says the tine drill is very useful driling after straw crops such as osr and also through the straw on second crop cereals.
Buying the drill from a German farmer was not particularly complicated, and provided him with a higher spec machine than Horsh sell in the UK. The seed dart tyres are much wider, and the machine is fitted with blockage monitors as well as full width front packers and also a liquid fert application system.
A sheaf of photos were taken, and Clive then asked for some of specific parts to show wear. The deal was done at under £5,000 which Clive says is the market value of these machines which are too large for small farmers to buy. Original owners like to buy new and sell when the machine is still in good condition.
Narrow tines with wear tiles
@Clive knew he wanted to make changes, substituting the Horsch tines and coulters for something far narrower, and has ended up getting his own design of tine made, which has a wear tile made from Ferobide, far harder than tungsten. The drill is on the farm primarily for osr and 2nd crop cereals drilled into chopped straw and the 25cm spacing is okay for these crops.
Comments on Clive’s on-line forum, TFF, said the drill many not be so good with beans, as the slot is a mere 12mm wide. And in barley the spacing may well be too wide as it needs to be thick. Clive points out that the seed pipe can actually be a bit wider than 12mm as it is in the shadow of the point. It would be good to have the option of using it for beans.
Above left: The cheap CO6 is being calibrated ready for its first outing
Above right: The adapted Horsch is being filled by the home built drill logistics trailer with seed and liquid starter fert.
Getting around the German instructions
The Horsch came, of course, with a control box and instructions in German. More on-line discussion revealed that English instructions were available on the Horsch website, and another explained that Horsch was sourcing some of these parts from Agton in Canada anyway. Zealman from New Zealand explained that the button marked with callipers should be held down for around 5 seconds. The menu is where you adjust the tramline sequence, valve layout and row numbers.Ball hitch is a continental standard and provides a positive connection between tractor and drill
The Stocks Wizard has a rotor modified for Avadex which otherwise leaks everywhere
A Stocks Wizard is on the back of the drill and used for Avadex. Here again the knowledge of actual farmers is helpful. Alistair Nelson warned that the rotor and the surrounding shroud need to be changed, and he got good advice “from Rick at Stocks”. Clive has the same setup on the 750A and says that the Avadex leaks everywhere unless the modification is made. The drill was acquired and modified in 2016 and the results have been excellent.
The machine went through the residue without many problems and having the second drill has meant more timely planting. Clive has shown that moving into No-Till is not the expensive exercise so many farmers think it might be. The total cost, after modifications which included replacing all tines and coulters, was under £8,000.
Author Mike Donovan writes: we have featured a number of home made direct drills in @Practical Farm Ideas, and are always interested in seeing more. Please contact mike editor@farmideas.co.uk or 07778877514.
-
PRODUCTS IN FOCUS…
NEW BIOSTIMULANT PRODUCTS PRODUCE EXCELLENT RESULTS IN 2018 DROUGHT CONDITIONS
British biotechnology company, AminoA Biostimulants launched their new liquid range of biostimulant products In July 2017 , so harvest 2018 has been an excellent test of their performance in some extreme conditions.
AminoA FLO is a highly concentrated l-isomer amino-acid complex developed for the large scale arable farmer, and is manufactured in the UK. It contains synthetics and the latest crop penetrant technology to make it suitable for mixing with other agrochemicals. There are no restrictions on its use, apart from in organics, and it is competitively priced against comparable products. It is recommended for use in all fungicidal tank-mixes at a rate of 1 litre ha. In the case of severely stressed crops or to encourage protein synthesis in Wheat, pod fill in OSR or other key target growth stages it is recommended to apply 2.5 litres ha
The Company have also launched AminoA GRO, a liquid L-isomer aminoacid complex formulated from vegetal source material and fluvic acid to maximise plant uptake. AminoA GRO is fully approved for use in Organics. The recommended application rate is between 2-5 litres ha. ‘’Our products are deliberately designed to have broad spectrum activity as they contain every essential aminoacid that plants synthesise throughout their growth cycle. Therefore, if applied to the plant at any stage from sowing to maturity they can contribute positively to yield and quality if the plant is not already producing an optimal level of aminoacids itself.
We are satisfied that repeated use of our products in combination with other agrochemicals will enhance their effectiveness and produce a yield response in the crop.
Most of our customers are conventional arable farmers who have realised that the judicious use of biostimulants can boost yields and profits whilst at the same time sustaining the fragile ecosystem in our soils. We have been delighted to work with Triton Farms across their 5000 acres in the UK and it is very rewarding to see that they have achieved farm record yields with a very low input system.’’ Richard Phillips Managing Director AminoA Ltd.
Direct drilled crops often suffer from low levels of available nitrate in the Autumn, as low soil disturbance does not mineralise nitrogen as traditional cultivations do. The programme used successfully at Triton Farms this season, in OSR and WW was 3 applications of 2 litres of AminoA FLO. For crops sown at traditional timings it is important to make applications in the Autumn before growth stops and then again as early as possible in the Spring. For late sown crops apply as soon as the crop has emerged and there is sufficient leaf area to take up the product.
Further applications should be made at boots swollen to mid-flowering in WW to boost proteins and at petal fall in OSR to extend pod fill or in the event of stress on the crop. At Triton Farms we conducted several tramline trials in OSR and WW. The results in OSR were dramatic and the untreated areas produced less than 50% of the biomass of the treated area, the farm average yield of 5.04 t ha was a record for OSR.
The entire WW area had already had 2 applications of 2 litres of AminoA FLO , so trials were conducted to establish the effect of 0, 2 or 4 litre applications at mid-flowering. The average yield increase from the 2 litre application was 7.5% and 13% from a 4 litre application. Hectolitre weights were also extremely good and increased up to and average of 86 kg hl at the 4 litre application rate. Overall the farm achieved it best yields ever, with a low input herbicide programme, farm saved untreated seed, a 12 ha fungicide programme and 220 kg Nitrogen. As a result they have already ordered 6000 litres AminoA FLO for the coming season.
Our OSR trials in France saw a pleasing 540 kg yield increase from a 2 x 2 litre application programme and we are expecting spectacular results in Sunflowers. Independent fully replicated WW trials in the UK (variety JB Diego) showed yield responses of 0.5 t ha from single applications of 3 litres ha AminoA FLO at either GS30 or GS39, when both timings were used yield increased by 1 t ha. AminoA FLO is effective in all crops and we would recommend growers use at least 1 litre ha in every fungicidal tank mix. In many cases this should not be an added cost as other products can normally be reduced as their efficacy will be improved. AminoA Biostimulants are available direct or through selected distributors, for more information see www.aminoa. co.uk call 01633894300 or email enquiries@aminoa.co.uk
-
FARMER FOCUS – TOM SEWELL
“To bale or not to bale”
Life is full of compromises! Any of you who have been married for more than a few years will know this is to be true! I love my wife dearly and without her I’d be completely lost. Not only is she a wonderful woman, mother and cook. She also doubles as farm secretary, go-getter, deliverer of harvest lunches and dinners and the one who knows exactly when I’m doing things wrong! Unfortunately she’s almost always right! Next year we will celebrate our 18 year anniversary and part of the reason we are still happily married is our ability to talk and compromise on things.
“What on earth has this got to do with conservation-ag and no-till farming?” I hear you ask!
Well this year as a farmer who has been 100% no-till farming for 5 yrs I found myself becoming quite set in my ways when it came to the issue of baling straw.
Having spent 2 years travelling the world on my Nuffield Scholarship looking at successful no-till techniques and finding farmers who had been carrying out this practice for up to 40 years, I became a bit of a fanatic about chopping straw, creating a mulch and feeding the worms and soil biology with all forms of crop residue. I have been very proud to say that our lack of P and K applications in bagged form for now over 18 years have been largely down to chopping straw as well as adding some compost, FYM and cover crops in small amounts recently However this year the hot dry spring and summer in the UK saw many more arable farmers than normal bale straw behind the combine!
This was prompted by the stock farmers, who found that summer grazing ran out, and conserved winter supplies had to be fed during summer. The hashtag #farmershelpingfarmers was created on twitter to help champion the plight of the suffering stock farmers and champion the roles of the selfless arable farmers who rushed to the aid of their fellow farmers by baling every blade of straw in sight.
It’s interesting that this coincided with record prices for both straw in the swath and by the ton!! Part of me found this frustrating! “Don’t they know they’re ruining their soils and wrecking their soil organic matter levels?” was the thought going through my head if not on my twitter timeline! It did make my blood boil that certain farmers would publicise their generosity to the nation whilst taking a price for that straw which, if truth be known, the stock farmers will struggle to justify even if they barely can afford!
A soil advisor of mine once said “straw is a crop so treat it as such. Put half the money in your back pocket and spend the other half improving your soils” With this in mind and the arrogance of youth (41 is still young for a farmer!) I obviously chopped everything this year! Having just applied a second dose of slug pellets (ferric phosphate of course) to my struggling Oilseed Rape today (10th September) I’m beginning to wonder whether I should be compromising on my “no baling” rule particularly pre OSR! Perhaps baling the straw and applying some compost/FYM etc would have helped emergence?! (And my bank balance!)
This year we used a cane molasses product with our liquid nitrogen and this seems to have worked well. Our aim has been to soften the negative effects and also reduce our overall N rate. We have done this by 10% on the previous years rate, with yields and quality very pleasing given the difficult grain fill period. I am planning to use this product, called “Boost”, with all fungicides, liquid N and glyphosate at a rate of about 5L/ha for the coming season at @ cost of about £3/ ha per application.
Given the hot and very dry weather following harvest we chose not to establish any cover crops this year. Our self sown volunteer Oilseed Rape is growing away nicely as a free cover crop pre wheat. Ironic that no slug pellets, fertiliser or pre-ems have been used. So thoughts now turn to autumn and next years projects and planned purchases! Having broken 16 shear bolts on our flat lift in as many yards, an auto reset subsoiler and perhaps a big straw shed are on the shopping list!
-
FARM WALKS WITH THE SOIL FARMERS OF THE YEAR 2018
The winners of the FCCT Soil Farmer of the Year competition opened their gates over four days and provided a veritable masterclass in managing soils. Spanning a range of soil types, management systems and enterprises, attending farmers gained insights into their award winning management and a better understanding as to why these farms had been picked as the top three in this year’s competition.
The Soil Farmer of the Year Competition, now in its third year, is run by the Farm Carbon Cutting Toolkit and Innovation for Agriculture. The competition aims to find farmers and growers who are engaged with, and passionate about managing their soils in a way which supports productive agriculture, reduces greenhouse gas emissions and builds soil health, organic matter and ultimately, carbon. For the first time this year, some of our finalists were presented with their certificates at Groundswell, which was a fitting venue to recognise their achievements.
The competition this year attracted a large number of high quality entries. Judging them is always challenging. However, from a list of high calibre finalists, the top three were announced and very kindly agreed to host farm walks to showcase their management to other farmers, explain a little bit of the journey that they have been on to get to this point and share ideas. Simon Cowell, this year’s winner, farms 400 acres of heavy clay with a large acreage below sea level. Simon has been working on improving his soils for the last 20 years, and moved to a notill system 12 years ago, being flexible with both management and rotations to prioritise soil health. Simon was chosen as the winner this year because of his passion and enthusiasm for soil management and this was evident during his farm walk. Simon focusses on building soil health with a combination of no-till, the use of homemade compost and a diverse rotation which grows healthy plants, allowing for a reduction in inputs. These were all things that were discussed during the walk. The first stop was the compost heap.
Compost
In the last 5 years, Simon has refined his compost making technique to produce a highly effective biological inoculant that makes a visible difference when it is applied. The compost includes horse manure, woodchip and garden waste, as well as gypsum (providing calcium and sulphur in a biological form) to counteract his high Magnesium levels, and is made to a strict method.
The materials are layered up in rows and then turned using a compost turner, every day to begin with and then less and monitored by using a temperature probe to keep the material below 70 degrees C, to protect the beneficial microbes. Once the compost has stopped heating up and is left, the fungi can start to grow, colonise the woody material and build associations. It is then left to mature, and then applied at between 2-4 tonnes per acre on the surface of fields that need it. Simon explains, “Compost is the best thing ever.
If the soil is not in the right condition, when you apply biology it will not thrive. However if the biology make their home in the compost, when the compost is applied to the soil, they won’t die off, they have a stable home and can thrive. It is changing my soils, within a few weeks of an application you can see a visible difference.” This year Simon is aiming to apply a lower rate of compost across a wider acreage to maximise the benefits. After the compost heap the group continued looking at some of the different crops growing and discussing rotations.
His long term vision is to get the soils into a position where they can generate all the nitrogen the crops need (he hasn’t applied P or K for the last 20 years), and get it so biologically active that the weeds won’t grow and the crops dominate. His aim is to lessen the impact of management on the soil and allow it to ‘bounce back’. He explains, “In a completely natural environment, all is balanced and correct. Everything that we do, changes it. If you gently ploughed it as the only intervention, the soil would recover. However everything that we do knocks it back, ploughing, cultivation, fungicides, etc. We need to lessen the impact of all these things.
On-farm trials
One of the ways that Simon has managed to lessen his impact is to change to more spring cropping, which has dramatically cut his Nitrogen usage. He is keen to push this further and see how far he can go and what can be achieved. To this end he has a range of trials on the farm, including looking at how wheat performs without artificial Nitrogen, and whether the mycorrhizae will work with the bacteria and fix nitrogen out of the air and fed the crop.
Simon explains – “In a normal situation, the wheat would just go all yellow and be hopeless without Nitrogen, but its looked quite decent all year. It didn’t tiller out and there are fewer ears there definitely but it’s quite a reasonable crop.” As well as the Nitrogen trials, Simon is also testing a range of wheat varieties to see if they behave differently in a notill system. He drills all his wheat with a mixture of 4 varieties (Conqueror, Gator, Diego and Panorama), and this trial was a good opportunity to compare his hybrid variety in terms of yield and performance.
Trials were done last year, and the results were positive; Simon’s mix yielded the highest, and as such, the trials have been repeated, and modified this year. As well as testing the varieties, this year he is looking at varying inputs, varying fungicide, herbicide, growth regulator and trace element levels to assess the impacts on yield, performance and costs. The group were looking forward to seeing the results, as this year the trials will be cut with a plot combine.
Simon echoed again the main reason for trialling new ideas, improving soil health. He explains, “Soil health is so important, and is the overriding factor in all decisions made, much more than financial implications. I am farming for the long term rather than one year at a time. It’s so difficult to get the crops to grow, the less I do to my soil the better. The driving factor is to do a better job and improve my soil, saving money is just a help.”
Simon finished the evening with his best piece of advice for anyone considering changing their management. “You’ve got to make the decision yourself, its got to come from you, wanting to understand the soil and how it works in terms of its biology. I won’t claim that you can maintain artificially high yields, it’s a different way of looking at things, but I’ve massively lowered my cost base. Biological systems are not predictable.”
Our second place farmer this year was Angus Gowthorpe, who farms 400 acres in York with a mix of arable crops and grassland for his pedigree cattle.
Angus manages a variety of soil types from blow away sand to heavy clay and has completely changed the focus of his management to concentrate on soil health to benefit the business and the next generation as well as the wider environment. Making the most away from tillage 5 years ago, he has seen the soil structure start to improve especially on his heavy land.
The first crop that the group looked at was some wheat which had followed linseed. Along with discussions on the benefits in terms of input reductions that can come with a transition to a notill system, there was a good sharing of experiences of the use of cover crops, as this field had had a cover crop prior to the linseed. Angus explained the process that he had gone through over the last three years of using cover crops; starting out using a basic mix of oats, phacelia and buckwheat, gradually adding other species including sunflowers, peas, millet and vetches to create a diverse mix. This cover crop was grazed by sheep and the benefits of grazing cover crops including the addition of beneficial biology through manure deposits to turbo charge the soil was discussed. While talking about livestock, Angus explained about the cattle and the wish to move towards a mob grazing system in the future to further improve soil health.
Following a look at the wheat, the group then moved on to look at a field of barley and talked about weed control, drainage, whether or not to apply gypsum and muck as well as the benefits of reduced tillage systems in the dry weather in terms of holding onto what little moisture was there. After another field of barley and more discussions about the importance of soil structure, drainage and encouraging the worms, the attendees gravitated towards the machinery and specifically Angus’ John Deere 750a. Questions around drill selection, adaptations, liquid fertiliser kits and different discs carried on for a long time along with ideas around how to take some of the ideas away and work on them at home.
Our final walk took place at Little Pix Hall Farm in Kent, which is managed by this year’s third place winner in the competition, Will Steel. Will has transformed the farm into a business where soil management takes priority and is sustained for the long term. The focus of this farm walk was looking at how farming and the environment work together to create resilience, and looked at how to make the most of the assets on the farm. Will explained how getting the soils to work and be more productive was a crucial part of the long term strategy of the business.
The farms soils were tested when it was derelict in 1987 and had a soil organic matter percentage of 5%. This dropped to 2% in the 1990s using a plough based system, and Will has been working since 2000 to increase the organic matter percentage back up to 5% using a combination of minimum tillage, no till and cover crops. Walking round the farm it was possible to understand how the different ‘assets’ fit together and how the environmental features on the farm form part of the business. Stopping at a field of spring oats.
Will explained how cover crops are a key part of helping build soil health and fertility. The field had previously been down to a second wheat, with a cover crop planted immediately after the combine with an 8 way mix to maintain green cover. The aim of the cover crop is to grow fertility – it avoids the expense (and paperwork) of importing manure and the risk of compacting the soil when the manure is spread. Will terminates the crop by rolling on a frost when the temperature is minus 5 and is getting good results using this method.
As with all of the farm walks, how the crops were performing in the dry weather was a hot topic of conversation, and the importance of organic matter in terms of holding onto the moisture was well recognised. Will also recognises the importance of worms (as all of our finalists do) and through regular worm counts is seeing the numbers rise from 12 million per hectare two years ago to 15.3 million per hectare this year. He puts the increase down to the improved organic matter levels and the management of residues as well as a reduction in tillage.
As with all Soil Farmer of the Year farm walks, there is always a lot of time standing around a soil pit and this was a highlight on this farm walk. Will explained about the challenges of managing soils in this area of the High Weald, the importance of magnesium as the soils have a high calcium content, and how he is managing his 8 inches of topsoil. He is seeing the beneficial effects of changing his management including retaining the soil in the field explaining “when we were ploughing, there was a fair bit of soil erosion, the cover crops protect it over winter and you can walk out on the fields after three inches of rain without wellies, it just stays where it should.”
This is a brief summary of the farm walks and the conversations, ideas and plans that were set in motion. A big thank you and congratulations to the three winning farmers of 2018 as well as our three other finalists, Simon Drury, Martin Howard and David Lord, as well as the kind sponsors of the competition, Cotswold Seeds and NRM. If this has inspired you to enter the competition next year, then the competition will open again on World Soils Day 2018 and more information is available on the FCCT website at www.farmcarbontoolkit.org.uk .
-
DRILL MANUFACTURERS IN FOCUS…
SELECT TOOLS FITS FOR PURPOSE FOR EFFECTIVE MINIMUM TILLAGE
The benefits of minimum tillage or notill drilling systems are well established, and – whilst there will always be a significant role for the plough – there is no doubt having a wide range of cultivation options is important if arable margins are to be maximised. The key point is to use the correct machine for your individual requirements and/or conditions, first understanding precisely what it is you are seeking to achieve. Minimum tillage is as much about improving the soil and plant ecosystem as it is about saving costs. Keeping organic matter in the surface layer of the soil encourages humus development, and this in turn leads to the higher levels of micro-organism and earthworm activity that will improve soil structure and stability.
The aim must be to minimise soil compaction and ensure any crop residues are spread evenly across the field. It is then a matter of finding the right pre-drilling cultivation to create the friable, aerated and well-drained soil that is so essential to successful crop establishment. With so much variation in conditions across farms, and indeed within individual fields, UK farmers need flexible systems to achieve the best results consistently. KUHN Farm Machinery’s approach to minimum tillage is to provide a range of options, with each offering easy adaptability and great flexibility in use.
NEW FROM KUHN ESPRO range extended
KUHN has added a 4-metre version of its combination min-till seed drill to its expanding range of ESPRO trailed machines: the new ESPRO 4000 RC is a 4-metre working width, foldable machine which enables seed placement and fertiliser application in one pass. The ESPRO 4000 RC joins KUHN’s existing line-up of trailed min-till drills which includes the 3-metre rigid ESPRO 3000, the 4-metre and 6-metre foldable ESPRO 4000 R and ESPRO 6000 R, and the foldable combination ESPRO 6000 RC.
Roller option extends PERFORMER versatility
KUHN has enhanced the versatility of its range of PERFORMER deep tine-disc cultivators by adding a new ‘Double-U’ roller to the range’s list of optional equipment. Already available on KUHN’s PROLANDER seedbed cultivator, the Double-U roller is now available on all models in the PERFORMER range, with machines available in 3, 4, 5, 6 and 7 metre working widths.
Stubble cultivator suited to lower power tractors
KUHN has launched two mounted versions of its OPTIMER stubble cultivator for use with lower power tractors. Available in working widths of 3 or 4 metres, the new OPTIMER XL 100-series machines feature two rows of independent discs followed by a roller bar which can be equipped with a variety of KUHN press wheels.
-
DRILL MANUFACTURERS IN FOCUS…
ENERGY & ROW CROPS, STRIP TILL AND SOIL HEALTH, BY GEORGE SLY
A lot of the attention on no-till and zerotill is on cereal grain production and it is very encouraging as a manufacturer to see so many enquiries for our Boss drills both in the UK and Europe. Less focus is on the fresh foods we enjoy every day such as root veg, salads, potatoes, sugar beet and energy crops such as maize. All of these generally have very intensive tillage regimes as the “risk” is seen too high to venture off the beaten path. As well as being a shareholder in Sly as an equipment manufacturer I also farm 280 hectares of clay/silt land at Gedney Hill near Spalding in Lincolnshire. We are cropping Winter Wheat, Winter Triticale (Forage), OSR, Maize (Forage), Sugar Beet and Spring Oats . All our cereals are either scratch till or no-till and are drilled with our Sly Boss 6m drill.
All our row crops (Maize, S.Beet and OSR) are planted either no-till with our precision planter or behind strip-till with our precision planter. There Is no ploughing or full surface deep cultivation. This means we are doing the very least amount of cultivation we can with trickier crops. We are also placing fertiliser very accurately and growing cover and companion crops.
We are pushing the boundaries of strip till technology for maize production, and we have had very encouraging results so far, I am confident we can match yield on any conventional crop on the same soil with strip till versus conventional providing it is managed correctly with significantly lower costs. 55,000Ha of maize is grown for A.D now in the UK and its vital we do this as efficiently as possible to avoid bad press. In 2019 we will try to use this same system on salads, vegetables and pumpkins in the UK. We have a customer in Tasmania that grows 800Ha of Broccoli and Cabbages and they are now 100% using the Stripcat for tillage and fert placement. Meaning a 70% reduction in tillage to produce a large part of Melbourne and Sydney’s winter veg.
Benefits of Strip till include:
• Up to 70% reduction in overall diesel use
• Less capital in expensive high horsepower equipment
• Up to 40% reduction in fertiliser use by placing it accurately
• Up to 60% reduction in damage by harvest traffic (a major issue with UK Maize)
• Cultivate 30% of the field not 100%, you are only tilling where the plant will grow
• Reduced run off
• Improved use of rainfall (water runs into the strip)
Image below shows the result after one pass with the Sly Stripcat 2 utilising offset coulters to plant the interrow with a cover or companion crop. The oil radish and oats are in the inter-row and the tilled strip is where maize will be planted in 6 months time. In theory this field is being fully cultivated, half by plant and half by machine. Interestingly the radish managed to “loosen and aerate” about 20 cm deeper than the tine was running when we did a test dig in the spring.
Combining Strip till with the very latest in planter technology can ensure the success of the system. At Sly we are working with precision planting in the USA who manufacturer control and sensory technology for planters. Our first planters are working on my farm and my partners farm in France and we have been amazed at the performance.
The planter features:
• Row by row downforce control, even in rougher conditions on strip till our seed depth uniformity is above 95% (depth is more or as important as spacing)
• The Smartfirmer (A sensor running in the seed trench) is monitoring organic matter, soil moisture, soil temperature and furrow cleanliness and uniformity and adjusting population and fertilisation levels on the move.
• Furrowjet is allowing us to fertilise both in furrow and both sides of the furrow whilst planting. We are giving the plant both starter fertiliser and its early-mid stage requirement and placing it with extreme accuracy.
All these small things we are monitoring by hand harvesting the crops that have been given different treatments. The Stripcat 2 units and planter units are available from 4 to 18 rows, 2m-12m versions and from 40-125cm row spacings. They can either be together on a trailed machine or as separate toolbars. On lighter soils it is possible to combine both strip till and planting. On heavier soils it is always advised to separate the two jobs. Our planter units are expected to be commercially available from mid 2019.
We do hold open days at our farm and if anyone wants to see what we are doing we welcome visitors.
-
Practical Soil Biology
Written by Robert Patton from Plantworks UK
‘It was a new day yesterday but by God it’s an old day now’. The briefest of reflections on the COVID I could dream up, courtesy of Jethro Tull (worthy of pointing out to the younger audience not the chap that developed the seed drill).
While we struggle to find any positives from the last year, I would reflect on a discussion between a leading agronomist and a large Cambridgeshire farmer on the hugely popular Amazon Primes’ Clarkson’s Farm series. I was expecting to hear some critical comments about this, a program that I thoroughly enjoyed, for sure there were some lack of efficiencies on show at times, but to my surprise both men were both great fans. Not only because Jeremy showed the sheer level of graft that it takes to farm in the UK, and the complexity involved, but also because he showed a willingness to try new things, planting new crops, laying down greening areas, an innovative spirit that both men commented is prevalent on many farms as we move through a significant shift in farming knowledge and a change in practices.
Another light at the end of the dark spring was Groundswell. I could not have been the only person reflecting that it was like somebody had taken their finger off the hands of the clock and set it ticking again. This event continues to impressive, both in terms of scope and the growing numbers of audience attending. This year over 4000 farmers and interested parties wandered the various lecture tents and spoke with exhibitors. It is clear that in the quest for better management of our denuded soils, scientist and growers alike are challenging some of the ingrained practices developed since the mid-20th century. Noteworthy also was the presence of all the major agronomy companies each offering extended soil management programs, all focussing on different aspects and levels of biology in the soil. This in addition to the Groundswell Agronomy team also being on hand dispensing their own brand of knowledge transfer for the duration of the show.
More so than any other farming event Groundswell is planted firmly on the value of healthy, functioning soils, with a goal of promoting both a better understanding of their importance and how this, the greatest of all assets, can be managed sustainably.
A core theme of the over one hundred talks at the show was the value of soil biology, and its role in increasing a crops’ efficiency of taking up nutrients and water. So where are we in the practical management of soils biology? Well understandably the first question posed by many is, ‘How do I know the level of beneficial biology in my soils’? Soil organic matter remains the good proxy for biology soil health as it defines a measure of retained soil carbon through a balance of both organisms and vegetation in the soil and their natural decomposition.
At the organism level we have the worm counts, that all farmers are familiar with. Although studies have defined optimum worm counts, practically speaking a farmer needs to take a year-on-year measure of improvements. At the microbe level things become more difficult and yet here is where much of the breakdown of soil chemistry is taking place; as these microbes break bonds that lock nutrients in soils and convert soil nutrients to plant available forms.
Genetic tests, performed on soil samples, are available using primers for different micro organisms that can accurately quantify the biological background of certain species however these can be expensive and limited to laboratories and may be more of academic interest. General primers for common genetic markers are more generally used when reviewing fungi and bacteria in soils to offer an overall picture of populations, as can the measure of cellular / metabolic components. A tier below this level of detail are field testing kits, some reporting in less than a few hours, that define the general level of fungi and bacteria in the soils, often expressed as a ratio.
The soil is home for many organisms, good and bad and although these tests do not offer details of these, they do offer an overall datum of soil microbial life. There are no defined optimums for net bacterial and fungi levels or ratios in soils, although highly productive agricultural land generally tend towards a 1:1 ratio or err to a bias towards bacteria. These measurements are therefore useful when used as tools to measure improvements in soil life post soil management changes. The onus remains on the farmer to map their soils and to correlate soil structure, organic matter, and biology to yield, or in the modern world to profit, as a myopic maximum yield focus some would argue is the root of soil decline.
In relation to practical soil biology management there are simply two paths to travel. Changes to better and more harmonious (or balanced, possibly involving livestock) rotations and the use of biofertilisers – simply products with living fungi or plant growth promoting rhizobacteria supplied on some form of carrier or suspension.
Changes in rotation and field amendments will depend on a road map of the current nature of the soil and where the goal is set. To define this path all farmers should understand how microbes’ function with their target crops. Arguably the king of fungi is the mycorrhizal fungi; responsible for locking in one third of all soil carbon these fungi offer a common root system to crops and support greater nutrient uptake and drought tolerance. These fungi do not associate with all commercial crops, OSR, Sugar Beet and Brassicaceae not being hosts. Equally crops that require significant soil disturbance (cultivations), such as potatoes, break the fungal structures and reduces the effectiveness of this established hyphal network. Exploring means of intercropping to ensure the fungi always have an appropriate host or, where practical, using a cover crop with mycorrhizal fungi added after harvest, to redress the losses of the season are some options to consider.
Plant Growth Promoting Rhizobacteria are free living and are therefore less host dependant, although they replicate more readily in the presence of root exudates. Recent work has shown that specific consortia are required for different crops, these organisms act to fix nitrogen, unlock phosphorous and produce natural plant growth hormones.
Considered by many to be the most relevant of the biofertilisers, these are usually applied to soils as they warm up in the early stages of crop development. Recently reported 2019-20 trials in the UK provide replicated results showing uplift in yield following the use of biofertiliser in winter wheat. In addition, wheat trials have shown that by enhancing the soil microbiome with rhizobacteria farmers are able to reduce their nitrogen inputs by up to 25% and still maintain yield and quality.
So, back to the telly with Mr Clarkson and his team. You have made a truly great start! If we could, nudge you a little further in the direction of sensitive soil management in the ensuing series, you could really help move regenerative farming in the UK further forward; as well as making our Sunday evening viewing even more enlightening.
-
Farmer Focus – Alex Shutes
It’s now been well over a year since I wrote my first Farmer Focus piece and I have continued to learn as I go on with our strip-tillage system having had some good and not so good results on the way.
As with a lot of farming much can depend on the weather, and despite the strip-till systems ability to conserve moisture the summer of 2016 was so dry here that we lost 40 of our 70 acres of OSR to lack of moisture and slugs that refused to come above ground to eat the Sluxx pellets I had kindly provided them, preferring instead to feast on my chitting OSR seed. Cover crops went a similar way with so little moisture to get them growing it was about an 80% failure overall.
With that in mind our OSR drilling had a slight change in mindset where we planned to only drill with rain almost certainly on the forecast rather than aiming more for a specific date, switching back to higher seed rates of conventional seed, to put liquid N+ P down with the seed to give it a boost, double roll at different angles if necessary and putting Ferric Phosphate slug pellets down with the seed. This was implemented in the summer of 2017 with good results in terms of crop establishment, only harvest this year will tell us how we have really got on.
Our move to Volume Hybrid barley for the first time last harvest gave us our best ever yield of winter barley on the farm, the crop looked great all year and did 9.4t/ha, it seemed to be about the only crop that didn’t suffer to much in the dry spring! For harvest this year I have changed variety to Bazooka to hopefully push that even more but the wet winter and early spring, plus combine and trailer wheelings from a wetish harvest doesn’t look to have done it many favours, however, I may yet be suprised.
Our Claire 1st wheats did ok again for us last harvest though I’m still waiting on final lorry loads to calculate total tonnage. JB Diego 2nd wheats were disappointing, they were badly affected by the long dry spell in the late spring where they were on lighter land which pulled the average down to only just over 7.5t/ha. This year I have switched away from Diego and gone for the higher yielding KWS Kerrin as a 2nd wheat which looks good so far and the weather this spring is proving better for maintaining potential yield so far with some good rain events and nice spells of sunshine!
Propino spring barley also had its last year here for harvest 2017, the difficult growing season last spring (and perhaps a lack of PGR in hindsight) caused the crop to brackle over badly so I estimated we lost possibly 1t/ha on the floor from the combine chopping heads off underneath the knife. Speaking to other farmers we weren’t the only ones to have this issue and still managed 5.5t/ha. Another variety switch has been made this time to KWS Irena for this year for its improved lodging and straw stiffness scores as well as greater yield potential. It looks great so far despite not being drilled till the 3rd week of April. We also used our liquid fert system, that was installed on the drill for using on the OSR, to place 200l/ha of 14-7-7 to see what difference it would make. In terms of yield, we won’t know till harvest, but establishment had a very visible difference with the few test areas I turned the fertiliser off were considerably behind in growth once the roots took up the placed fertiliser. 5 weeks after drilling and there is still a noticeable height difference between the two areas although they are now all they same dark green colour whereas the non-liquid fert areas had been a much paler green for a few weeks. I’m very interested to see what this brings at harvest.
Spring beans managed 3.8t/ha and didn’t all make human consumption quality, another victim of last springs drought. We have them in the ground again this spring though I am looking at alternatives as Blackgrass control is not good in them, though the 1st wheats after look very good this year!
Other developments include a new combine, with a wider header, so fewer wheelings, and a chaff spreader so even more improved trash distribution. I’m looking forward to getting it stuck into this years crops!
Claire 1st wheat after spring beans, stubble raked, sprayed off and drilled @200kg/ha on 10/10/17.
New liquid fert nozzles (red cap) and stainless steel holders putting liquid fert down mixed in with the seed before being covered up.
Filling up with liquid fert whilst drilling spring barley.
KWS Irena spring barley receiving some Manganese. Drilled @220kg/ha on the 24/4/18, versatility of the DTS showing as this land was ploughed as a reset due to ruts at harvest and building work. Had been ploughed the previous year as well so this field has yet to be fully converted into strip-till. Flexability is key at times.
-
Tractor 3-pt compost turner uses a truck axle
In future years compost will become mainstream in farming, and compost heaps will become a regular sight on farms. This homemade turner which was first published five years ago has been a popular workshop project due to low cost and simplicity. It makes a great introduction for composters who are looking for a machine which creates an even, uniform turn to the heap. Something that’s not so easy to achieve with a loader and fork.
Having turned more than 5,000 cu yards of compost with no problems, Paul Bernier is happy to say that his home designed and built compost turning machine is up to the job. It works on the Californian vineyard which he manages alongside his brother. They grow 45 acres of grapes without irrigation, which means they need to conserve moisture in the soil, and composting is an important means of doing this. This year they didn’t get the spring rains which they rely on, so they are turning and mulching the ground with compost to hold in what moisture they have.
The guard shield allows close working in the windrow – Paul hopped off to take the pictures. The Bernier’s use the compost turner to convert all the waste from their wine operation into plant food for next year’s crops, and it is so successful that compost is their nutrient source for the grapes and also a 5 acre field of row crops.
Five ft rotor gets into the pile
A heavy built rectangular frame mounts on the 3-pt and the tractor PTO connects with the back axle, and differential, off a substantial truck. The PTO drives one of the wheels and the output turner is axle’s drive shaft. The axle can be rotated on the frame so it can be lifted up about 45 degrees. The PTO is connected to the left hand (curb side in the UK) wheel. The right hand half shaft and hub are retained and the hub is locked so the drive goes to the original drive shaft alone.
The drive shaft from the truck has a 5ft long pipe fitted over it and a series of tines bolted to tine holders that are positioned in a spiral. The tines are short lengths of steel plate which are turned in a shallow angle so they catch the compost but don’t spade it up.
The axle is held in place by two solid hoops with fitted grease nipples, the front one fitting round the housing for the half shaft, and the rear around the axle in front of the wheel hub. Welded to the axle is a heavy support strut across the gap from half shaft housing to the drive shaft end, and this has a bracket on which a hydraulic ram (red) is fitted. There’s a bracket with a hole in it welded to the diff casing and when the machine is lifted this fits into a clevis on the frame, allowing the machine to be locked upright for transport.
Compact, simple machine is built around a big truck axle There’s a robust angled blade mounted between the rotor and the drive, and this goes to the ground when the machine is used in its lowest position. The blade has an angled part at the front which pushes the outside of the swath up, and there’s a further pusher mounted in front of the rear wheel that does the same. This means the machine can be used tight to the compost row.
Strength built in to work at any angle
The way the machine lifts allows it to work at an angle as well as horizontal to the ground, so it can be used to turn the top of a swath of heavy compost before going back and lowering the turner for a second go through. The diff is rated at 20,000lbs and the turning loads are far less than this, so the gearing has plenty in reserve.
Fast worker
Paul says “This machine is pretty efficient, I turned this windrow, approx. 250 cu. yds. in 15 minutes. I have been making around 2500 yards a year with this thing for 4 years, with no problems. I was worried that the hub bearing wouldn’t take the load, but it doesn’t even get hot after hard use.”
-
Arbuscular Mycorrhizal Fungi and Modern Wheat Varieties
Procam have been working with a number of no-till farmers to look at ways of maximising crop yields whilst reducing inputs. One of the key areas which Procam have been looking at is the use of growth promoting bacteria and fungi to help stimulate root development and increase nutrient and water uptake by the crop. One such trial now in its second year, has been looking at the potential of modern varieties of wheat to be colonised by arbuscular mycorrhizal fungi and the benefits of this association.
Approximately 74% of flowering plants form associations with arbuscular mycorrhizal fungi (AMF), which require a plant host to survive, and the colonisation of plant roots by AMF has been shown to have a number of plant benefits, including; increasing plant uptake of nutrients and water, increasing a plants’ tolerance to both biotic (pathogen infection) and abiotic (drought) stresses and improving soil structure through the release of the protein glomalin.
However any current farming practices have depleted the natural levels of AMF in the soil, through the use of some pesticides and fertilisers to which they are sensitive, growing crop species such as oilseed rape, or sugar beet which are non-mycorrhizal and through cultivation practices where their hyphal network is damaged. No-till farming practices are a good environment for the re-development of natural mycorrhizal populations, and we have seen this on our trial farm down in Essex, which has very high background levels of AM fungi.
The trial I conducted on behalf of Procam, wanted to assess not only the ability o modern wheat varieties to be colonised by AM fungi, but also to assess any potential differences in varietal colonisation levels which might help us to be able to identify varieties best suited to the no-till growing system. The trial took place on a farm down in Essex which has been practicing no-till for over 10 years and with soils which had been tested and found to have high background levels of mycorrhizae present within the field.
A total of nine different varieties of wheat, plus the farmers’ own group 4 wheat variety blend were drilled in the autumn of 2016, following lucerne. The wheat was taken through to harvest with assessments made in March, when the plants were tillering and in July just before the crop was harvested, on the level of AMF colonisation seen. Colonisation levels were assessed by staining the wheat roots with a dye which binds to the AMF structures within the root cells, allowing me to visually assess the proportion of the root samples which were colonised.
The images in figure.1 are examples, taken using a microscope showing some AM fungi structures found in stained wheat roots at the assessment timings in March (A) and July (B). AMF structures have been stained dark blue, whilst plant cells remain white/ light blue. The results from the first year of the trial showed us that all the varieties of wheat tested were capable of AMF colonisation, although the levels of colonisation varied between varieties (figure.2). There was an overall increase in the level of AMF colonisation within the wheat roots from March to July and this is likely due to AM fungi becoming more active as temperatures increase and could also explain the lower variability in colonisation levels between varieties in the samples taken in July, as those less mycorrhizal varieties had a chance to ‘catch-up’.
Of all the varieties trialled KWS Bassett and KWS Silverstone appeared to be the most mycorrhizal, with KWS Silverstone having double to five times the proportion of root area colonised, compared to the other varieties at the March sample timing. This gap had reduced by the July sample timing and it was KWS Bassett that had the highest level of colonisation at this timing, although KWS Silverstone still had the second highest level of colonisation, suggesting that these two varieties are potentially the best to grow in no-till systems.
A second year of the trial is currently on-going, with most of the same varieties being tested, to try and see if the results of last year’s trial are replicable. Procam will be at Groundswell this year on 27th-28th June, at stand E5 in the pasture field, where I or my colleagues will be able to give more information out about our work on AMF, including some preliminary results from the second year of the wheat trial and our work with other biologicals, and our other no-till trials.
-
Did you know? AHDB Strategic Farms
Rick Davies is one of the latest to join the AHDB Monitor Farm programme, where farmers meet at a host business to share ideas and expertise and learn from experts.
He said: “There is a lot to be learned from other farmers. It will be good to get a group together to talk openly. “I want to dig deeper into our business, to focus more on my costs.” During the three years of the Monitor Farm programme Rick hopes to increase his business resilience, reduce fixed and variable costs while maintaining crop quality, and improve soil health for a healthier crop.
Rick is holding his first event on 4th July – you can find out more details on how to attend here – https:// cereals.ahdb.org.uk/northampton
About the farm
Rick Davies farms 404ha at MTH Davies, between Northampton, Bedford and Milton Keynes. He grows milling wheat, malting spring barley and HOLL oilseed rape, all for premium markets. The soil is a mixture of sandy loam, corn brash, silt and heavy clay loam. Crops are currently established with a Claydon-based direct drill and Rick would like to look at other systems of establishment. As a family-based business, MTH Davies has a number of diversification activities to spread risk, including boxed beef, office and industrial units and residential lets.
-
Alternatives to Glyphosate to Terminate Cover Crops
Innovative Farmers Look for Alternatives to Glyphosate to Terminate Cover Crops
Anglia Farmers are running a new field lab through the Innovative Farmers network, investigating alternative ways to terminate cover crops.
Many farmers rely on the chemical herbicide glyphosate to destroy unwanted crops at certain points within the crop rotation, but with uncertainty over its future availability there is a desire to find new methods. These Innovative Farmers are getting ahead of the curve and finding new ways to establish a successful minimum tillage system without the use of chemical sprays.For organic farmers, finding ways to reduce their reliance on ploughing will help to enhance soil health further and potentially reduce overall use of fossil fuels for successful crop establishment.
Lara Clabburn, Anglia Farmers Group Coordinator said; “This field lab is very exciting as it unites all farmers in finding better ways to cultivate soil, establish crops, maintain or improve soil structure and ultimately increase profit margin. It is already catalysing new ideas for cover crop destruction and preparation for crop establishment.
The aim is to find and develop new tools which will help us to reduce our reliance on glyphosate.” Already several organic farmers have joined the group and the field lab is expected to attract attention from both organic farmers looking to do more minimum or no tillage, and conventional farmers wishing to reduce their reliance on glyphosate.
One of the participants of the field lab group is Andrew Woof who is a member of Organic Arable and farms 500 acres of organic, mostly arable land at Weston Farm in Oxfordshire. After reading about work in Japan and the US, he plans to use a roller crimper to turn his cover crop into a weed supressing and nutrient providing mass of stems. He can then drill directly through it, meaning no plough, and minimum compaction.
Andrew said; “I started looking for a way that I could improve my soil by enriching it with biomass and keeping soil disturbance to a minimum – So reducing compaction and preventing nutrient mineralisation. “Joining Innovative Farmers gave me the inspiration to start thinking of things from a different angle. I hope that, through the field lab with Anglia Farmers, we might be able to find some conclusive
evidence for using minimum tillage in soil management, resulting in carbon capture through increased organic matter and so an improved bottom line.’’ As well as trialling Andrew’s suggestion of a roller crimper, the group will look at other techniques to reduce the use of glyphosate and help reduce input costs.The network has a range of supporters, bringing significant knowledge and experience to the field lab. Research partners of Innovative Farmers include: ADAS; Duchy College; the Centre for Agroecology, Water & Resilience at Coventry University; the Food Security & Land Research Alliance; IBERS; Harper Adams University; Rothamsted Research; and the University of Bristol. Innovative Farmers is part of the Duchy Future Farming Programme, funded by the Prince of Wales’s Charitable Foundation. The network is backed by a team from LEAF (Linking Environment and Farming), Innovation for Agriculture, the Organic Research Centre and the Soil Association, and supported by Waitrose
-
Drill Manufacturers – Prime West
Prime West
Cross-slot technology emerged in New Zealand around 30 years ago, and has evolved through intense university research in both New Zealand and the USA. It has been field proven in more than 17 countries.In concept, the technology allows farmers to place seeds and fertiliser very close together in an optimum environment to encourage seed germination and establishment, by using an ‘inverted T’ slot. In 2012 Primewest Limited built its first UK designed drill. Now 3m, 4m and 5m grain only drills are produced, large seed hoppers, hydraulic control systems and sophisticated electronics including ADF and memory valve functions complete the package, with liquid fertiliser and microgranular hoppers as optional extras.
The Technology
The key part of the technology is the Opener – the part of the machine that engages with the soil. A 22 inch diameter steel disc is supported in a parallel linkage. Each side of the disc is a cast iron blade; the blades are pressed against the disc by rubber pads. The blades are hollow, allowing seed or fertiliser to be blown down to the lower edge of the blade, where the small wing forms a horizontal slot in the soil. The depth of the Opener is controlled by two rubber tyres, negative air pressure press wheels, making the depth easily adjustable. The disc, press wheels and main pivot points are all supported on the same size taper roller bearing and sealed against contamination by a triple lip seal. Each opener is lifted in and out of work by a hydraulic ram, controlled by a memory valve, to ensure it is returned to the soil at the same pressure every time. The features of this opener make it unique with many advantages over its competitors.The Environmental Benefits
The challenge to world agriculture over the next forty years is to increase output by 50%, whilst inputs are going to become more costly and limited. We must also produce a higher quantity of food whilst improving our soils and environment. True no-tillage can go some way to mitigating these problems. The most obvious savings are that of fuel and time. One fault in many soils is that they have become overworked, meaning it has been tilled too many times to produce a good seedbed.Tilling has many detrimental effects; mixing air with soil accelerates the breakdown of organic matter. Organic matter is a key element of a fertile soil. Earthworms and other invertebrates feed on the organic matter and distribute it through the soil profile. Their burrows not only aerate the soil but provide channels that improve drainage, important when we are getting heavy rainfall events. A soil rich in organic matter can absorb more water, releasing it to plants when required but also helping to bind soil particles together, helping to prevent water runoff and soil erosion.
Soil is a very important natural resource, made up of a complex balance of microorganisms, which can easily be destroyed. By using true no-tillage we have the potential to manage and use soil properties more effectively. To achieve the highest return from this technology, and to keep the soil biology working, farmers need to change to adopt longer and more diverse rotations by using both winter and spring crops, cereal and broadleaf plants and cover crops wherever possible. The Openers allow crops to be established with the minimum of soil disturbance, this reduces weed emergence. This ultralow disturbance approach will in a very short period start to improve soil biology, releasing more nutrients to the crop. The savings in fuel and time are immediate but larger savings in agricultural chemicals and fertiliser applications soon emerge.
-
Horsch, a Return to Direct Seeding
Horsch, a Return to Direct Seeding
Originally written by Frédéric Thomas and published in TCS in August 2015While this may be a surprise many, Michael Horsch is first and foremost a farmer, not a designer and manufacturer of agricultural machinery. The opening of East Germany after the fall of the Wall in 1989 allowed him and his family to expand its farming and implement new equipment and test its expertise, while refining its farming strategies. Therefore, his outlook, his analysis and action have always been oriented towards the search for efficiency for farms. A pioneer in simplifying tillage 30 years ago with the Seme-Exact, today it is the management of soils and the development of a comprehensive approach involving the location of traffic that leads back to ideas around tillage.
From the Seme-84 through the Delta Sem and soc Duett (PPF) to the Terrano and Focus (a form of strip-till) it is looking for solutions that are efficient, sustainable and consistent agronomically which motivates Michael Horsch. Although his company is still growing and takes the majority of his time, he has always kept his “eye in” as a farmer.
The management of the company farms in the former East Germany and the Czech Republic continue to challenge the way he thinks and mean he has to continually refine his agronomic strategies. It is this collaboration between the field scale tests and the machinery industry that enables the design and development of appropriate technical solutions. This attitude is shown in the way he has tackled the world of spraying, where he does not hesitate to challenge convention by proposing to greatly reduce the risk of drift by tracking the spray target.
It is sufficiently accurate to develop a proactive boom height management system to maintain height above the vegetation to less than 25 cm. In terms of tillage, Horsch has endeavoured to propose solutions for the reduction of the number of passes and therefore the costs of establishment.
In this context, direct seeding has been studied and comparing devices following standard practices on the Schwandorf family farm operating in Bavaria has produced reliable results. It shows that under these specific conditions and without peripheral changes, it is this approach in min-till to 20 cm which is the most effective in providing consistent results, even a slight performance gain while providing mechanization savings (25 l / ha fuel economy compared to ploughing). This notion is also a very important issue in a world where the price of land as an input requires a reliable operating system, notably with major operating sizes.
Learning Maize Cultivation
With the acquisition of a farm in the Czech Republic in 2002, Michael Horsch was faced with growing maize in clay soil. This experience promoted the use of the striptill, but also the idea that it is important to minimize traffic. With the acquisition of another farm north of Prague also on very clayey soils, it definitely became worth investing in the location of the traffic (controlled traffic?) of all passes with a correlation on the land between sprayer (36 m), tillage and drill (12 m). This new experience enabled him to understand and then demonstrate that it is primarily the wheels and trafficking, particularly in clayey soil, which requires remedial action to the ground to recreate a porosity and become even easier to till in the next run. Therefore, if the movement of machines is firmly confined to less than 15% of the area (target of only 10%), the soil retains its structure and porosity. The removal of deep work becomes possible and mintill becomes feasible. It is particularly interesting that in CTF (Control Traffic Farming), one must be able to work and sow especially with the equivalent width of the cutting combine to facilitate alignment of the passes.Weed Grasses – And Resistance Develops
The second concern is the weed situation in Northern Germany and other major grain Eastern countries. Grasses, in France, are widespread and are becoming
resistant, control costs are becoming too high and therefore dead ends appear in farming practices. Even if the rotations are a little tight, it is increasingly clear that it is not intensive tillage that is the solution. Rather, it appears that a strategy of non-disturbance of the soil at planting, removing the operation that triggers germination, is more suited to reducing the weed grasses; another plus point for direct seeding. This is a form of holistic approach based on the location of the traffic and decreased risk of weed grass always in combination with a search for efficiency and reduction of production costs which lead to Michael Horsch’s interest in tillage. With Horsch’s communication strength and newly developed machines, it is certain to positively move this issue at European level and to change the perception of many farmers and technicians.
Development And First SD Seeder Trials
After the design of a first seeding element for Direct drilling in 2013, Horsch built a drill prototype in 2014 that worked that autumn in Haute-Marne to test and validate the options he considered. After this first round using discs, two new machines, with the latest developments, were trialed in summer and autumn 2015 in the same area and also with clients elsewhere in France. The idea is to challenge the technical choices in different conditions. In parallel, other farms in similar situations are running tests in Denmark
and Germany To limit soil disturbance while maintaining good control of the sowing depth, the single disc solution has become fact for Horsch.While considering the approach of the JD 750, which has been widely tested, Michael Horsch and his team adapted their drill so that it met their specifications and injected their expertise in the design and construction. The support arm is cast steel to give it more rigidity. At the front it is attached to a square section bar by a flanged system and rubber pads. This choice now has well proven reliability and acts as a damper to stabilize the machine and also individually each element. The penetration pressure is hydraulically adjustable from the cab made possible by pivoting the support square on itself. It should reach 200 kg / coulter.
In terms of disk opener, the Horsch has chosen a large diameter (480 mm) to better cut through trash but the working angle has been reduced to a small angle, again to minimize disruption to seeding. The gauge wheel that is attached to it is a smaller diameter (400 mm) and wide enough (115 mm) to be as effective in controlling the depth in previously worked soil as in post-harvest stubble when seeding Direct. Finally and still for reasons of reliability, the bearing is also of a large diameter (65 mm) in an oil bath and with two tapered roller bearings in order to better absorb the lateral forces. The seed boot adjoining the disc was also slightly refined for the same reasons. It is protected by two tungsten plates and is adjustable in height relative to the disc (3 positions).
Finally and like the original, the seed is stopped and pressed in the ground by a wheel that follows in the groove. This is, however, equipped with a scraper and is retractable if the sowing conditions do not allow its use. Then the groove is closed by a side wheel, which it is possible to adjust for pressure (3 positions). Beyond these elements, the originality of the direct sowing Horsch line is the integration of a sweeping tine at the front. This option is not yet finalized really in shape but it is certainly useful to establish seedling lines including through straw for rape or to sow in straw covered stubble immediately after harvest.
The location of fertilization is also integrated to compensate the non-mineralization through cultivation at planting. The drill will be equipped with two hoppers with placement of the fertilizer into the same groove. For now only the solid fertilizer version was available. Finally the frame, which we believe now has been completely finalized, will carry fixed hoppers and retractable hydraulic coulters.
Horsch has already integrated in the design integrated ballast masses on the front and rear hoppers. Although this prototype is not yet completely finalized, it is already very functional and will perfectly fit into the overall strategy defined by the manufacturer / German farmer. Mr. Horsch is investing convincingly in the market for no-till seeders.
-
Rapeseed With Pulses and the Management of Nitrogen
Rapeseed With Pulses and the Management of Nitrogen
Originally written by Gilles Sauzet and published in TCS in March 2016
When we include pulses or beans in the cropping system, either as a main crop or companion crop, nitrogen management is at the heart of the strategy. Knowledge of the evolution of nitrogen build-up and nitrogen flows mobilized by the different cultures that can use it, becomes a major asset, especially in low-availability environments.
The inclusion of legumes in cropping systems should naturally lead to a limitation of mineral nitrogen and reduce emissions of greenhouse gases, this more or less short term. Nitrogen is also not the only benefit emphasized. A more global vision, leading to environmental improvement is primarily expected. Structural quality, biological, organic soil is taken into account and becomes an essential element in our quest for success of the system, highly dependent on the quality of implementation of crops and intercropping. Soil is at the heart of the approach and its fertility should allow obtaining robust plants, able to develop and express a potential appropriate to the context.The farmer must always act on the state and trends of the environment, soil and weather. In some areas, the more limited potential, it is in the interests of sustainability, reflecting the integration of levers able to pass a course in agro-economic performance, while moving towards an agroecological approach. Uncap yields under limited potential contexts is not impossible if the components of the environment is respected by integrating innovative levers suitable. The associated rapeseed now has some experience.
After several disappointments in particular linked to the absence of frost-free phases and non-destructive disabling plants in spring, it has become common practice in many farms of the AC networks. Expectations agronomic terms are the same as when rape is alone. However the associated plant should not compete with the crop. A balance needs to settle and why each species, in turn, must take advantage of the elements at its disposal.
Autumnal behaviour
The objectives in winter entrance, as rape either alone or combined are the same: quick lift, good stand structure, root growth capacity, to facilitate dynamic aerial growth of oilseed rape for accumulating nitrogen and set up vis-à-vis competition from weeds and insect management. The fear is of course to have a cover of legumes that would compete with the growth of rape. The cycle associated species is offset from the cycle of rapeseed which induces non-concurrent phases of growth.The competition is rare once the implementation of rape is successful. It sometimes gets better behaviours associated rapeseed in biomass and accumulated nitrogen. This is the case in waterlogged soils crusty. The legume, especially faba beans, helps to improve the porosity and emergence. The partner rape is rarely if ever limited nitrogen input or output of winter, unlike the single rape, mid to low balances and this, no one can talk of dilution; accumulated aboveground biomass in both cases is very close. The competition rapeseed / legumes is extremely rare.
The experimental results show a decrease of 5 units of nitrogen absorbed, which can be attributed to a favourable variance of green biomass alone rape. However nitrogen contents of measures and visual field observations (leaf colour) show a better nitrogen status of partner rape without that we can evoke a division between plants, but a better root condition and perhaps, some rhizodeposition.
Behaviour in spring
The profit is expected in the spring. Indeed pulses, which normally must degrade in winter operation are assumed to improve the nitrogen stock in the spring, their C / N is low (9 to 15). The initial objective, through the introduction of legumes in the cropping system, either as a main crop, covered with intercropping or in combination, is to improve the availability of nitrogen to make profit crops, but also to enrich the rhizosphere and preserve the structural state, and organic soil pore. Early tests indicate that rape can itself benefit from this. Its fall and winter behaviour is modified (deeper rooting, better nitrogen status) and often allows a more dynamic growth recovery in late winter.It therefore seems less dependent on the availability of mineral nitrogen fertilizers and biomass and nitrogen accumulated in bloom are consistently higher in partner rape. Behaviour associated rapeseed, as seen throughout the cycle is improved. Rape can benefit quickly from an additional source of nitrogen that allows her to express a priori identical potential. If we compare the differences in nitrogen CAU (apparent coefficient of use), there is a better use of rape in nitrogen associated with legumes. Certainly fertilization is lower and may explain this. However the best root exploration is also a justified explanation.
Splitting closely studied
The results obtained confirm that bloom reduce the dose of 30 units does not disturb the growth and therefore in principle the establishment of the number of pods and seeds. In contrast to the stage G4, the associated rapeseed is less productive biomass and accumulated less nitrogen. Fractionation of nitrogen in combination situation definitely needs to be worked and reviewed. The good condition of winter rapeseed output associated not campaigning for a dose of the same nature that only rape, even in situations with low availability. However, we need to extend the absorption late flowering and maintain a more efficient LAI Post-bloom. At this level, the later contributions can be interesting.As such, some tests have shown that eliminating the late contribution (point E) associated rapeseed could be limiting (Spring 2014) especially when the late flowering is watered. The results obtained confirm that bloom reduce the dose of 30 units does not disturb the growth and therefore in principle the establishment of the number of pods and seeds. Work on the fractionation is ongoing. Maintaining the leaf area index during the late flowering stage physiological maturity is important to try to improve the thousand grain weight, component until now very stable as rape either alone or associated.
To improve the productivity in grains, grain number is decisive. The PMG tends to decrease when the number of grains becomes too large. It is therefore necessary to find ways to maintain, even in non-optimal climatic conditions. In addition and to date, the sulphur fertilization, as rape is alone or in combination, is identical. This aspect of the route has not been worked.
Rarely unfavourable productivity to the association
By incorporating legumes covered the rape, it is hoped to benefit from ecological interests. Competition vis-a-vis weeds, disruption of insects, the optimized growth rapeseed, throughout the cycle should result in better overall behaviour, which provides for expression of a potential at least equal to that obtained by only rape, but with a reduced crop management inputs. The graphs below show against the associated productivity gaps between rape and alone, associated oilseed rape has received 30 units of nitrogen and less, weed control programs or fall insecticide reduced.Certainly the differences are small but rarely associated adverse to rape. System robustness is noted in place. It gets as much or more with less. This is confirmed by tests performed by farmers plots (graphs below cons) in Berry. By incorporating legumes covered the rape, it is hoped to benefit from ecological interests. These comparisons confirm the reliability of this practice. When the associated rapeseed compared with a reduced route (nitrogen / insecticide / weeding) yields similar results to a single rape with complete ITK. This success is completely linked to the rape installed. Since its implementation is successful, his behaviour is optimized either alone or associated.
Of the association are expected agronomic and ecological benefits. By cumulative effects or interactions with the integration of other levers, improvements are expected on the ground and the culture system. In production areas where both agronomic and economic performance are average and irregular, this positive development of the environment and the care given to crop establishment, must be able to uncap insufficient returns. Inevitably, evaluating the potential created will influence the forecasts of nitrogen fertilization in particular.
Our goal is to characterize the evolution of fertility medium to produce more with less or much nitrogen. For this, it is appropriate to know the fate of nitrogen accumulated and returned by legumes in the cropping system. This work is ongoing with holdings in Berry in particular networks.
The introduction of legumes, an important issue
The place of rape is sometimes questioned or discussed in some areas it has been historical producted in. We must find new production methods, new sources of fertility. We must act on the course culture and its success depends on securing its implementation and introduction of new levers to improve its growth and behaviour with respect to bioaggressors.The introduction of legumes is an important issue that we must evolve both in technical route productivity. There remain issues to work or refine as the optimal destruction phases covered, the amount of accumulated biomass necessary, assessing the performance target may be different from one rape, splitting nitrogen … This paradigm shift therefore suggests positive developments regarding rape culture but also the accompanying crops in the rotation.
Indeed the integration of legumes rapeseed will not by itself transform the usual results, but participate as well as the introduction of other innovative practices (intercropping covered more permanent cover, differentiated management of intercropping with work and not work, lengthening the rotation when possible …) to improve the environment and productivity. Establish robust crops on a carrier floor production should allow to increase the potential in a context of respect for the environment. Grow or so becomes an obligation in certain soil and climatic contexts. Changing practices across culture and system must facilitate this success.
-
A Cover Crop ‘Addiction’
Getting Positive Results From A Cover Crop ‘Addiction’
Originally Printed in No-Till Farmer – USA By Julia DebesBill Buessing leaves no stone unturned as he seeds various cover-crop species to feed cattle, build up soils and fix nutrients for cash crops.
A self-described “cover crops addict,” Bill Buessing maintains a cash crop or covercrop mix on every acre of his farm year-round. Not only does this protect and improve the soil, it also provides forage for his cattle and has allowed the Axtell, Kan., notiller to cut back on fertilizer.
While growers across the U.S. are experimenting with integrating cover crops into their rotations as a source of livestock forage, few do it with as much flair as Bill Buessing.
A self-described “cover crops addict,” the Axtell, Kan., no-tiller maintains a cash crop or cover- crop mix on every acre of his farm year-round. Buessing also seeds an experimental plot each year, testing more than 40 different types of cover crops and blends. He puts the results to work for both his traditional cash crops and a growing cattle herd.
He says covers let him reduce nutrient runoff, retain and utilize more water, slow down wind erosion, help with weed control, build organic matter in the soil, recycle nutrients, feed cattle and build nitrogen (N) for present and future crops.
But, he adds, achieving maximum results requires more than simply adding another planting to a farmer’s rotation. No-tillers must learn how to manage crops more intensely, as well as document how variations in cover-crop blends and practices affect yield and soil health longterm.
“You have to change your mindset if you’re going to make cover crops work,” he says. “Implementing cover crops is a process that does not always show immediate rewards.”
Cereal Rye Workhorse
Utilizing a secondary crop for livestock feed is not new to Buessing’s family operation. His father drilled oats into wheat stubble for fall pasture, and when Buessing purchased his first farm in 1998 he did the same where soybeans weren’t double-cropped behind wheat. But with two brothers also farming, Buessing says his father — who is still active in the operation himself — encouraged all three of them to branch out from his farming model.“Dad encouraged us to think for ourselves and make our own decisions when we started farming,” Buessing says. For Buessing, the integration of cover crops was more than an experiment — it was a necessity. For 19 years, he worked as a lineman for the Nemaha Marshall Electric Cooperative by day and tended to his farm and cattle after hours. But as his oldest daughter approached high school, his wife Sandy challenged him to find a new way to both farm and spend more time with family.
With 440 acres, a smaller-than- average farm size in Marshall County, Buessing weighed how to increase profitability enough to justify leaving a full-time, offfarm job. The answer: Planting cover crops as forage. “I don’t farm enough acres to farm fulltime without cover crops or livestock,” he says. Buessing began seeding covers for winter forage in 2003. In 2007, he seeded cereal rye specifically as a cover crop, after corn and ahead of soybeans. He uses a Landoll drill to seed his cover crops.
Solar crop panels. Bill Buessing says the wide leaves catch more sunlight and build carbon that can be utilized by subsequent corn or soybean crops. The large canopy also helps suppress weed growth.
“Cereal rye does a lot for your soil,” he says. “It’s the closest thing to a silver bullet that we have found.” He explains that cereal rye, which he typically seeded around 50-60 pounds per acre, has the biggest root system of any winter cereal, so its roots can help break up hardpans in the soil. In addition, the root system uses extra N from the previous crop and stores excess N for future crops, while adding carbon to the soil and building organic matter as well.
On top of the soil, the cereal rye helps suppress weeds, Buessing says, requiring fewer chemical applications to keep the field clean, reducing wind and water erosion and holding more water to preserve rainfall moisture for the growing crop in the summer. Finally, cereal rye helps keep the soil cooler in the summer, which benefits both the soil biology overall and the subsequent soybean crop, he says. Buessing now utilizes up to 40 different cover crops in his blends. Individual blends may contain up to 18 different covers, depending on whether they’re used strictly as forage or in rotation with cash crops.
Boosting Cash Crops
Maintaining a cash crop or cover crop on every acre all year since 2013, has helped Buessing correct a problem he spotted in an aerial photograph of his farm taken during the winter months of 2011. Looking at the picture, Buessing realized that residue-covered fields surrounding his home, with nothing growing on them, meant lost opportunity to capture the sun’s energy to fuel the next year’s cash crops.Year-round grazing. Bill Buessing’s forage mix is spread out so he has forage available for his cattle all year. Cattle are moved to cool-season pastures after leaving the winter cover in spring, then to a summer blend planted in May.
“From September to April, there was nothing growing,” he says. “That is 8 months of carbon-capturing potential wasted.” By planting a cover-crop mix in addition to his cash crops, Buessing feels he’s putting soil biology to work 12 months a year. For example, he explains that planting brassicas is like installing solar panels: The wide leaves of the plant catch more sunlight and build carbon that can be utilized by subsequent corn or soybean crops. As a bonus, the large canopy also helps to suppress weed growth. The addition of covers also provides protection from wind erosion and nutrient runoff. For example, Buessing recounts receiving 3½ inches of rain in July during one weather system, and when he sprayed a field of soybeans planted into cereal rye the next day, he left virtually no tracks in the soil.
Today, Buessing reports his crop acreage now includes 20% corn, 20% soybeans, 20% winter cereals (primarily cereal rye), 25% spring and summer crops for grazing, 5% perennial cover crops and 10% expired Conservation Reserve Program (CRP) ground that will also be grazed and later planted to cover crops. For his cash crops of corn and soybeans, Buessing views the preceding cover crops as free labor to improve yields. “If you feed the soil, the biology works for you,” he says. For example, he reports that planting cereal rye ahead of soybeans has increased yields by an average 3-4 bushels an acre since 2007, compared to using no-till alone, with the advantage as high as 10 bushels in some instances.
Buessing typically plants cereal rye in the fall after corn and terminates the cover with 1 quart of glyphosate just before or just after planting soybeans. Termination timing is important, he notes: If cereal rye is terminated before he plants soybeans and the soil gets wet under the residue, he says he can have big problems with establishment. Instead, Buessing prefers to plant soybeans into the living cereal rye and terminate the cover crop the same day. For corn, Buessing applies liquid N in the spring with a rolling cutter and sidedresses later.
But with cover crops in his rotation, he uses less fertilizer than his neighbours. The exact amounts depend on previous applications, the level of organic matter on the field and the composition of previous cover crops, but the average rate is about 6 gallons of liquid N per acre. “I use less fertilizer than my neighbours and I am building my soils,” Buessing says. Buessing further captures market potential by planting non-GMO corn and soybeans. He says doing so allows him to meet local needs, purchase less expensive seed and achieve similar yields. Furthermore, he reports receiving premiums of $0.30 $0.50 per bushel for non-GMO crops.
Maxing Out Profits
Buessing increases the profitability of his cover crops through his growing cattle herd as well. He currently runs 40 cow-calf pairs with some replacement heifers, in addition to grass-finishing an average 40-50 head and 100 stockers to sell into local markets.“Livestock grazing cover crops help provide a quicker return on your investment,” Buessing says.
For example, Buessing ran 24 pairs for 100 days and 10 bred heifers on a winter grazing blend for 145 days on 60 acres one winter, with no additional supplements. He reports that in another field, 78 head of cattle weighing 400-800 pounds a piece, grazed 30 acres of cover crops over 25½ days and gained 2.78 pounds a head per day. Each acre produced 180 pounds of beef. Both of these fields followed a winter cereal crop and were planted in late July or early August.
Buessing spreads out his forage mix so that he has some forage available for year round grazing for his cattle. After leaving the winter cover in spring, cattle move to coolseason pastures, then go to a summer blend of cover crops planted in May, he says.
Next, they go to warm-season pastures before going to an August-planted covercrop blend. After that is a post-harvest blend grazed through winter until spring.
Reducing Feed Costs
Buessing’s fall cover-crop blend costs $45.72 per acre. The mix consists of 18 different cover crops, including primarily spring oats, cowpeas and spring peas, with smaller amounts of sunn hemp, Bruits hybrid forage sorghum, Mancan buckwheat, hybrid pearl millet and sunflowers in addition to even lesser amounts of the remaining crops in the mix.This diverse mix and extended grazing period allows Buessing to save time and money in winter months by reducing the need for purchasing winter feed. When he does supplement forage, about once a week in the coldest months, he rolls out his round bales rather than feeding in a feeder, typically in a new location each day.
This allows Buessing to more evenly distribute both soil compaction and manure, as well as add N to trouble spots in fields without having to apply N in the cash crop growing season. On one field that received significant snowfall, and where the cover-crop mix never froze, his cattle went 40 days without additional water. Far from stressed, the cattle had maintained their hydration by digging through the snow to reach the still green cover crops below.
In the spring and summer, Buessing rotates his cattle through paddocks, using a plastic-coated electric fence typically used for horses that can be easily moved using an ATV. Buessing limits this grazing area to roughly a 100-foot strip at a time. “You get better utilization if you make the grazing area smaller,” he says. Buessing aims to rotate cattle between paddocks every day during warmer months, but may leave cattle for up to 1 week in a larger location during the busiest months of the farm season.
Buessing’s summer cover-crop blend costs $71.30 an acre, and the mix consists of grazing corn, cowpeas, sunn hemp, hybrid sorghum-sudangrass, mung beans, Mancan buckwheat, sunflowers, mustard and hybrid forage collards. Buessing also plots out his cover-crop seeding near cash crop stubble in later months. By locating a cover-crop mix next to stalks, Buessing reduces the need for supplementing by simply managing the flow of cattle between the two fields.
Grazing a cover crop requires a different mentality than grazing a forage crop, Buessing notes. “Grazing a forage crop, in my opinion, means grazing a crop until there is almost nothing left to eat, while monitoring animal performance,” he says. “Grazing a cover crop means grazing the vegetation and leaving a good percentage of the cover left.” This includes both cover crop laying on the ground and left standing, he adds. As a result, Buessing says he grazes only about 35% of any given cover crop, going so far as to even include crops in his mix that cattle won’t eat. While this practice can reduce harvest efficiency by 30-40%, the limitation allows him to maintain good nutrition for his cattle and preserve soil protection. “You have to leave the soil covered and feed the soil biology if you want the soil biology to work for you,” he says.
Boost with Blends
Buessing notes that not all benefits of using cover crops are as immediately visible as fat, healthy cattle grazing. As a result, he monitors success with covers through observing the amount of weed suppression, as well as by comparing yields to check strips in fields and conducting soil sampling.To start assessing the payback for covers, Buessing suggests producers take pictures of their fields. But he warns not to expect good-looking pictures the first year. Over time the pictures he’s taken provide a visual comparison of how variations in timing and practices influenced weed pressure, erosion and final yield. Buessing also uses check strips in his fields to further differentiate where cover crops were planted and where they weren’t.
But his biggest indicator of positive changes occurring under the soil surface comes through soil testing. Buessing relies on data from the Haney soil health test. In October 2015, he had 14 soil samples from 14 different grids on six different farms analyzed. Nine samples scored between 15 and 20 and two scored more than 20, signifying “very good” (around 15) to “excellent” (anything above 20). “My samples have really improved since I started intensifying my cover-crop blends and rotations,” he says. “My soil tests indicated my organic matter has improved by 1% in 3 years.”
Measuring Profitability
With continued success in improving organic matter, increasing yield and achieving solid rate of gain, Buessing continues to experiment with different types and blends of cover crops. This includes an experimental plot where he seeds more than 40 different varieties and mixes of cover crops each year. This plot helps him gauge which cover crops are performing well under the year’s climatic conditions and which co-exist well together in what amount.He uses this knowledge as he works with Bladen, Neb.-based Green Cover Seed to prepare mixes specifically for his farm. The company’s SMARTmix Calculator includes data on more than 70 cover-crop species, assisting producers like Buessing in selecting the ideal mix for their location, planting season, soil type and average weather patterns. The calculator also helps him determine the rates of each species he uses in his mix.
His fall cover-crop blend generally contains 1½-2 million seeds per acre, while his summer cover-crop blend is usually around 700,000-800,000 seeds, since he doesn’t need to seed as heavily for species like grazing corn.
Right rate. Bill Buessing uses Green Cover Seed’s SMARTmix Calculator to prepare his mixes and determine what rate to use for each species. His fall cover-crop blend generally consists of 1½-2 million seeds per acre, while the summer blend is around 700,000-800,000 seeds, as species like grazing corn don’t require as much.
Buessing uses a percent of the full seeding rate recommended for each species in his mix so that his total seeding rate adds up to 120-130%, if he’s grazing the blend. If the cover-crop mix isn’t used for forage, he may only reach 70% of the full seeding rate, depending on what he’s trying to achieve, he says. Buessing now also works with his local NRCS agent to help measure the forage equivalent of his cover-crop mixes. Last year, Buessing measured his estimated pounds of forage per acre and growing days by clipping samples on Oct. 15 and weighing samples on Nov. 3.
For all the cover crops, except for the summer blend, he applied 50 pounds of N and 100 pounds of 18-46-0. Buessing’s estimated pounds of forage per acre ranged from 1,920 pounds for Selby Oats to 2,803 pounds for Bob winter oats on 64 days of growth. His fall cover-crop blend was estimated at 3,878 pounds of forage per acre on 72 days of growth, and his summer cover-crop blend was estimated at 13,401 pounds of
forage per acre on 106 days of growth.Buessing also measured the efficiency of a perennial cover-crop blend he planted in August 2010. That blend includes meadow brome, tall fescue, orchardgrass, timothy, meadow fescue, festulolium, pubescent wheatgrass, intermediate wheatgrass, grazing alfalfa, birdsfoot trefoil and big bluestem.
More Grazing Options
Buessing estimates this continuously covercropped field alone has saved him $50 an acre in feed costs per year. His hope is to develop more perennial fields like this one that would require no added fertility, could be rotationally grazed and could feed as much as if they were planted to brome.Buessing encourages growers to try out their own cover-crop mixes and catalog results through pictures, soil health tests and other measures. Buessing himself is continuing his cover-crop experimentation with pastured pigs and chickens to evaluate both the nutritional value of covers for these species, as well as potential profitability.
Most important, just like Buessing does each year at the Axtell American Legion, he asked them to share their results — both failures and successes — with others in order to turn those experiments into improved soil health and increased profits. “Rye?” he asked. “The better question is ‘Rye not?’ You never know what you can grow if you don’t plant the seed.”
-
Featured Farmer – Alex Shutes
Progressive Farmer – Alex Shutes
I’m Alex Shutes – @Shutesy on The Farming Forum, 28 years old, a graduate from Harper Adams University in 2012 and now a farm manager on a 200ha all arable farm in Essex.We grow Oilseed Rape, Wheat, W Barley, S Barley and S Beans on a 7 year rotation but with the mindset of not being afraid to chop and change depending on crop prices, the weather or for any other reason that requires a change in plans.
Our 1st wheats are grown as a low pesticide biscuit wheat destined for Heinz to produce baby food products, our 2nd wheat’s are feed, both our winter and spring barleys were grown for malting although this coming 16/17 season we have switched our winter barley to Volume hybrid barley grown for feed. Our spring beans are grown aiming for human consumption spec. The rotation has been lengthened from a predominantly Wheat – Wheat – OSR rotation on some of the farm with some barley here and there to this longer 7 year rotation to try and get a range of crops of different plant species growing successfully across the whole farm acreage each year to help both with soil and crop health and as part of a weed control strategy.
On this farm our soils vary considerably from light sandy loams, very gravelly sandy clay loams, clay loams through to heavy Essex clays.
Our previous establishment system was to plough and furrow press, powerharrow (sometimes twice), tine drill and then roll. It was quite labour intensive and used a considerable amount of fuel and wearing metal. However it was a fairly reliable system that could continue to work (to a point) in wet years and across all of our soil types we have here. However circumstances on the farm meant we had to look to get the farm into a system where 1 man can do the majority of the establishment work as well as crop spraying and fertiliser applications as opposed to the 2 man system as described above. This while also trying to reduce establishment costs at a time when crop prices are at the lower end of the scale but with a longer term view of improving the soil health across the farm and continuing to maintain or hopefully improve yields.
I have been interested in one pass strip tillage type systems, that begun to emerge in the UK from the likes of Claydon and Mzuri and lately Sumo amongst others, since I was at university. I could see the benefits it could bring to an arable or a mixed farm both from a cost saving point of view and the potential to be part of an overall system to help improve soils on a farm over time. I didn’t feel that our farm and soils were ready for a full no-till system and I felt that a min-till system wouldn’t help improve our soils or reduce our establishment costs enough to make it worthwhile so I felt strip-till was the best route for our farm at the time.
So in a move to a new and completely different establishment system for us we bought a 3m Sumo DTS drill in the summer of 2015. The initial purchase price of the drill was a big cost for us but we needed a new drill anyway as our old Weaving tine drill was starting to show its age a bit. Whether we had bought a tine drill again, a combi drill, a cultivator type drill such as a Rapid or a full no-till drill, most would have cost us £25k-£40k so price wasn’t as big a factor as getting the right drill for what we wanted to do. The DTS capability to drill into any type of seedbed was very useful for us as we are required to plough previous crop residues before planting our low pesticide 1st wheats. All other crops are sown directly into stubble or an overwintered cover crop. Sumo’s reputation as a British manufacturer making well built, high quality machinery was also another factor for us.
In the first summer with the drill we drilled all our OSR plus some cover crops on land that was going into spring cropping in the spring of 2016. We found quite quickly that the DTS wasn’t all too keen on the large amounts of straw that were being seen after harvest 2015 especially when drilling shortly after the combine had been through the field as it didn’t take much for the drill to block up. The issue was improved by cutting our stubbles shorter and by the time we came to autumn drilling the stubbles had all become brittle and were no longer really a problem. Sumo didn’t ignore the problems we were having though and provided us with great backup from the initial setup of the drill when we bought it, to various modifications that have improved the performance of the drill remarkably in trashy conditions so much so that now into Autumn 2016 drilling the drill hasn’t blocked once since!
When purchasing the drill we didn’t buy a straw rake at the same time as we thought we would see how we would get on for a year without one. The majority of the time we didn’t have too much of an issue but I have since found that trash flow through the drill is better when using it on raked stubbles. The main reason for buying a straw rake for us is that our current combine doesn’t have a chaff spreader so unfortunately we found that thick rows of chaff and short straw every 18ft in fields direct drilled into stubble have caused issues with greater amount of N lock-up, a greater number of slugs and very wet soil underneath the chaff that smeared whereas other parts of the field with no chaff on had a nice tilth, therefore we ended up with thinner crop on those thin strips where the combine had been.
Drilling setup (Claas Arion 630 and Sumo DTS3)
So we have now bought a 6m Weaving stubble rake with the view that it should spread straw and chaff about more evenly to solve the above problem, kill a few slugs and destroy some slug eggs, germinate weeds and volunteers, start the breaking down process of previous crop residue and let air into the top of the soil.
I haven’t seen any instantly visible changes in our soil health but have seen a few examples that we are heading in the right direction. A good example would be in some of our heavy land fields, that often would plough up in slabs and take a lot of power-harrowing to break into a cloddy seedbed in a dry year or would be a smeary mess in a wet year, were drilled in 1 pass into a nice tilth in the top 2 inches saving considerable amounts of time and money. I have also found that fields that have been direct drilled allow us to get back on the land much sooner when spraying or fertilising than we can with our ploughed fields which can be very beneficial when spray days can often be at a premium!
Spring beans into mixed species cover crop
I have seen a saving of roughly £60ha in establishment costs compared to our previous method of establishment, more accurate figures will be obtainable when we have to change more metal on the DTS than just the ripper leg. Fuel usage is between 11-12l/ha over the majority of our fields which is half what we use just by ploughing alone.
Having done considerable research into cover cropping we have begun using cover crop mixes before spring beans and spring barley in our rotation. This year I’m using a legume free mix before spring beans and a grass species free mix before spring barley. I am still very much experimenting, getting cover cropping and spring drilling right on heavy land is not easy at all but you don’t learn anything if you don’t try things on your own farm. Direct drilling in the spring is also very different to our previous system, I have found a lot more patience is required in difficult springs such as this spring just gone. I have used our stubble rake before this summer’s cover crops were drilled and will use it again this coming spring when the cover crop has been killed off in the winter to get air and sun into the top of the soil, spread residues about and kill any slugs that I can.
Drilling 2nd wheat 6/10/16
Results from harvest 2016 were quite promising overall for our first year in the system with just slightly less yield in most of our crops compared to the exceptional harvest last year. We had 1st wheats established with both our drills into ploughed land and there was no real difference in yield, quality or blackgrass levels between the two. We also had some 2nd wheat land ploughed as a comparison between that and direct drilled land and again very little difference in yields between the 2 systems. Our OSR and W Barley yields weren’t great but were very similar to other farms in the local area so the different establishment method wasn’t the cause of any yield drops it was just the weather across the growing season. Our S Beans yielded
better than previous years crop planted into ploughed land but this being only the 2nd year of growing them we need a few more years yet to start getting some average yield data. Our S Barley was the biggest disappointment and where I feel we have the most to learn about this new system. Heavy land in a wet spring plus high slug pressure made it clear that direct drilling in the spring is very different to direct drilling in the autumn.Wheat seed in tilled strip approx 35mm deep
In the future I would like to look at introducing some more organic matter to our soils in the form of compost, manure or biosolids whilst still chopping all our straw and using cover crops as I feel this will drive our soil health on at a greater rate than cover cropping alone. I will also continue to try different crops and varieties to see what can work for us on this farm. As mentioned above we have moved to hybrid winter barley and we are also trying some Belepi wheat to see what effect these can have as part of a blackgrass control strategy. I am also trying to think what we could grow instead of OSR in the coming years if CSFB, slug and pigeon pressures get even worse! Ideas so far include Soya and Sunflowers so there could be some interesting times ahead!
-
Drill Manufacturers – Vaderstad
Vaderstad
Vaderstad’s Carrier Working on Blackgrass Prone Farms
Vaderstad know that farms and farmers have to be flexible, that there is no one solution to suit all farms and therefore farmers need to find the system that works for them on their farm. Pure Direct Drilling just won’t work in every case and farmers need to find out what works for them. From this they have seen that creating a stale seedbed is one of the most important elements to contain blackgrass to a manageable level. The development of herbicides has enabled arable growers to break all the rules; they have been able to ‘farm out of a can’ as their prime means of weed control, rather than using rotations and other cultural methods. One of the results of that reliance on chemicals is that blackgrass has become an extremely serious problem on many arable farms.
David Taylor of Waterloo Farm, Fringford, found himself in this situation, where he grows 2000 acres of combinable crops; winter wheat, hybrid winter barley, oats, beans and oilseed rape in a rotation to fit the ground. David says: “The blackgrass problem, especially on the heavy land, has changed the way we farm,” “To contain the weed to a manageable level we still need herbicides, but alongside cultural control, where it is extremely important to get a good chit; creating the stale seedbed is one of the most important jobs on the farm.”
Operator Russell Deeley (left) and David Taylor, who comments: “making a stale seedbed is now one of the most important jobs on the farm”.
Five years ago David moved the target autumn drilling date from September to October to extend the length of the chitting period. But the issue of actually creating the best stale seedbed, on soils that run from brash to clays, was addressed 11 years ago.“We were running a set of heavy discs followed by a tined cultivator,” he explains, “but it was difficult to set it to move only the top two inches on the heavy ground. I always wanted an implement that just tickles the ground cheaply and quickly. A neighbour had a Vaderstad Carrier and we tried it out on 200 acres of hard heavy land and it made the seedbed I was looking for. The number of discs on the Carrier means it creates only a shallow tilth, but also chops trash and produces a good soil/ residue mix.”
The outcome was the purchase of a 5m Carrier which then was replaced it with an 8.25m-wide L825 model last season. “We chop and spread the majority of the straw and to get as long a chit as possible – the longer the better – the Carrier goes in as soon as we can behind the combine,” explains Mr Taylor.
“We go down only two inches on stubble but the Carrier is a multi-functional tool; it’ll happily create four to five inches of tilth on previously worked ground. “We still have to go deep to maintain drainage, so we leave the field for as long as time allows after the Carrier before cultivating down to about nine inches with a disc/tine implement fitted with a double press to firm the ground, a sequence that gives us a good volunteer and blackgrass chit.
We apply glyphosate before and after the deep cultivations and in front of the drill.” In addition to the longer and better stale seedbed David Taylor is also using varieties in his battle against blackgrass. “This year we have 500 acres down to hybrid winter barley, our second season with the strain,” he says, “it’s extremely prolific in the spring and out-runs the black grass. And I’m considering going back to two winter barleys in the rotation; it will enable us to start combining in July and give us an even longer stale seedbed.”
On Farm Machinery
When the time came to replace the Carrier David did look at another make of shallow cultivator but decided to stay with “what they knew”. Working behind Waterloo Farm’s John Deere 8345R or Case IH Puma 230 the additional width of the Carrier L825 will enable it to easily keep up with the combine, a New Holland CR9080 with a 9.1m table. Output will be around the 200 acres/ day mark,” comments operator Russell Deeley.“It also means that if we have only a two to three hour window we can get an appreciable amount done, which all helps with timeliness.” Mr Taylor adds: “I can’t think of another cultivator with the Carrier’s versatility, one that enables an extremely shallow cultivation and levels and firms the ground. It has made all our other cultivations implements virtually redundant and enabled us to practice a cultural and chemical programme that keeps our blackgrass to a manageable level.”
-
Mycorrhizal Fungi And Cultural Diversity in No-Till
Mycorrhizal Fungi And Cultural Diversity and Their Significant Increase in No-Till Systems
Originally written by Claudia Maurer et al. and published in TCS in February 2015The Swiss trial site at “Oberacker” has been comparing tillage and ploughing systems for over 20 years and continually assess the quantity and diversity of mycorrhizal fungi in various different establishment types. The results reveal significantly increased species richness and diversity of mycorrhizal fungi in plots under long term direct seeding.
Since 1994, the long-term monitoring site “Oberacker” in Zollikofen (Switzerland), has had the objective to develop a method of cultivation of farmland which is economically, ecologically and socially compliant. Direct seeding and tillage systems should therefore be optimized taking into account the selection of varieties and crop rotation, the type and amount of fertilizer, selection and application of plant protection products as well as management of straw and green manure.
Soil organisms play a central role, especially in the success of a sub-till cropping system. Like earthworms, which contribute significantly to the structuring of the soil and the decomposition of organic substances, bacteria and fungi act as a “hub” for nutrition and plant health.
Nearly 80% of plants benefit from fungi living in symbiosis with their roots: these mycorrhizal fungi facilitate access to nutrients for plants, especially phosphorus, but also by making nitrogen and water available – thanks to their hyphae – giving access to even the smallest pores of the soil normally unattainable for plant roots. In return, plants provide the fungi some of the carbohydrates they have assimilated (energy). Most species of crops and pastures live in very specific symbiosis with AMF (Arbuscular Mycorrhizal Fungi). Nearly 270 species have been investigated worldwide. Their presence depends mainly on the soil type and the operating methods.
That is why Mycorrhizal Fungi are considered bioindicators of good agricultural soils. Promotion of specific communities of mycorrhizal fungi may be an important factor to a bio-system that ensures efficient absorption of water and nutrients. The objective of this study was to compare the diversity of mycorrhizal fungi on plots operated for several years under direct seeding and of the ploughed plots, to determine the effect of cultivation, to identify the indicator species and to compare the results with the knowledge currently available.
Methodology
The long-term monitoring site “Oberacker” is located on deep brown soil. Six adjacent land parcels are seeded half on a no-till system and half ploughed. The crop rotation – winter pea protein crops, winter wheat, beans, winter barley, sugar beet and maize silage – lasts six years. In February 2011, soil samples were collected from a depth of 0-10 cm on the twelve subplots. For each sub-parcel, a sample was selected from 20 collected over the entire surface (about 1 kg).The main crops sampled were: winter pea protein crops, winter wheat and winter barley, two parcels of a mixture of green manures composed of several species and succeeding previous crops of wheat volunteers and winter barley and finally a bit of peas and field beans. Arbuscular mycorrhizal fungi spores were then isolated and identified by light microscopy. The spore density was determined for each case in number of spores per 100 g of soil air dried. Diversity has been characterized as an index for each type of crop and subplot.
Direct sowing leading to stable numbers of species and high diversity
A total of 39 arbuscular mycorrhizal fungi species were identified, including 38 in the no-till system and 25 in the ploughed system (Tables 1 and 2). The number of species identified in the various cultures (subplots) was between 15 and 21 under direct seeding, between 10 and 17 under ploughing.
Comparing averages also showed that the number of MA species is significantly higher under direct sowing (average 18.5) than under tillage (average 13.2). In both systems, a higher number of species (21/17) was identified in winter protein pea plots than in winter wheat (17/15) of green manure mixtures succeeding in winter wheat (17/14) and barley stubble (15/11). In the green manure mixtures succeeding winter barley sowing and harvesting before following by the sugar beet, the number of species identified in the no-till system was also higher than that of pea protein plots, with respectively 21 and 20 species, whereas it was only 12 or 10 species in the ploughing system.
In the case of planting following a preceding sugar beet crop, the explanation may lie in the fact that sugar beet is a species incapable of mycorrhization and during the beet harvest, the soil is strongly stirred in the top 10 cm. This effect appears, however, to be apparent in the ploughed fields regularly for the sowing of the main crop. In the case of direct sowing, the number of species remains high and the interaction between plant and fungi seems to be more stable. Not only the number of species but also their frequency and density of spores are important criteria in the variety description (Table 2).
The comparison of the average values of all types of crops (six subplots) shows a higher diversity index in the no-till system (H = 2.49) than under tillage (H = 2.17; Table 1) although the difference is not significant. In direct seeding system, the specific values vary between 2.12 and 2.86 depending on the cultures, and between 1.77 and 2.56 in the ploughed system. The H values calculated for direct seeding are comparable to those of previous studies in Central Europe with organic cultivation or grassland.
More species found in no-till
The list of species shows that about a third of species may be present regularly in both cultivation systems (Table 2, group A with 13 species and 12 species groups, gray background).The majority of species, 24, however, were found primarily or exclusively in the direct seeding (no-till) system. Among them, 11 species showed a relatively high density of spores (group B, green background) and 13 species of spores rather low density (group C, yellow backdrop). In the latter group, they have been mostly typical species of extensive exploitation and soil conservation work, or before any typical grassland environments. Among the 39 species or groups of species identified, only two were found primarily or exclusively in the ploughed plots (group D, brown backdrop).
Multivariety analysis clearly distinguished spore communities of both no-till and ploughed systems from each other. Organic carbon in soil (Corg), the cropping system and microbial mass are the variables that individually have the greatest influence on the composition of Arbuscular Mycorrhizal Fungal (AMF) communities. Among the chemical parameters, the Corg and pH were significant. The influence of the cropping system on the AM fungi community is shown indirectly through other parameters, particularly through the highest organic carbon content of the upper layer of soil (0-10 cm) in the ploughed system.
A high diversity of sub-till AM fungi can have a positive impact on the uptake of nutrients by plants, especially phosphorus. Some of the observations presented in Table 2 were confirmed by the redundancy analysis: Funneliformis, Caledonius and Paraglomus sp. BE12 are grouped near the ploughed plots, while the majority of AM fungi species were significantly denser under direct drilling. Other species that were present everywhere (Table 2) showed a more or less close relationship with the no-till system (p. Ex. Fu. Geosporus or Glomus aureum), less with the ploughed system (p. ex. Fu. mosseae and Claroideoglomus claroideum).
These observations concur with those of studies conducted in central Europe. The characteristic species that have been able to show for the long-term monitoring site “Oberacker” are Septoglomus constrictum for plots in long term direct seeding and Funneliformis Caledonius for ploughed plots.
Same species found in grassland
The type of use and the operating intensity have great influence on the AMF communities in agricultural soils: grasslands usually have a higher diversity than crops, extensive cropping increases the number of species, intensive rotations reduce them, and there are more species of AM fungi in uncultivated soil than in land which is cultivated. This latter finding confirms the results of previous studies on the long-term monitoring site “Oberacker”: there is an increase in species richness and diversity of AMF in plots under direct seeding since they ceased ploughing in 1994.Several species are characteristic of a no-till soil and some are also typical of grassland habitats. One can designate Septoglomus constrictum as an indicator species of direct seeding long-term on this site. For ploughed plots, the characteristic species is Funneliformis Caledonius. Among the various cultures, we find that the number of AM fungi species is usually lower in plots of winter cereals (barley and winter wheat) than in those of intermediate crops (green manure mixtures, sown before harvest). A successful direct sowing system depends on a fertile living soil. Promoting AM fungi, particularly specific species and AM fungi groups could make an important contribution to this fertile living soil.
-
Could you run a farm scale trial in 2018?
We as farmers are constantly being told about trial results, but as they say, there is nothing like trying things yourself on your own farm. Many of you out there are indeed already doing this, but what we would like to see is people sharing these results so other farmers can use that information on their farm. One example of this was @Clive Bailye’s trial of Adexar® and Librax® verses both his on farm standard and Aviator® Xpro. This was reported, live, as part of a thread on The Farming Forum, so other farmers could see what decisions he was making at any time and talk about exactly how his trial was taking shape. This included the prices various products were purchased for to properly analyse what the profit was from each different trial plot.
Clive will say that he was sceptical of BASF’s claim of an extra £20 a hectare margin using their products, but his own trial showed exactly this. For Clive, on his farm in Staffordshire in drought prone soils, T1 Adexar® and T2 Librax® gave an extra 0.43 t/ha and £57/ha margin over Aviator® Xpro. It also returned a greater margin than his farm standard as well. However, behind the scene’s BASF also asked a number of other farmers to run the trial as well. These weren’t reported live, like Clive did, but the results all help farmers build a picture.
3 other Farmers, Nigel Durdy, Russ McKenzie and Conor Colgan also ran field scale trials in 2016. In 2017, BASF widened the challenge to 50 farms. Bayer also ran their own programme of 50 farmer led field trials in 2017 called Judge for Yourself.
All of the BASF results can be found in more detail at www.basfrealresults.co.uk and all of the Bayer Results can also be read about on The Farming Forum and some results here: https://cropscience.bayer.co.uk/new…judge-for-yourself-david-hoyles-lincolnshire/.
While one set of results often doesn’t help a farmer reading them, putting these results together, gives farmers a lot of different soil types and farm practices to compare against their own to try and deduce whether they would see the same sort of gains. And that’s the real goal here, to give farmers as much information as possible to make on farm decisions. ADAS’s @DanielKindred has been helping to put together different farmers research under the umbrella of Agronomics So we would like to see more on farm trials, with farmers reporting them live on Twitter, their own websites or The Farming Forum.
Where farmers set out an aim or a “challenge” and then report on it through the year. It doesn’t have to be fungicides, it could be comparing two drills, the fuel economy of two tractors, the work rate of two combines, different drilling dates, really whatever trials you think would benefit “your” on farm decisions. These trials can then be shared with other farmers and we all get more information to make our decisions on. So if you think you have an idea for an on-farm trial in 2018, then we would like to hear from you and we will help it be a reality.
So please send your ideas to us at info@directdriller.com
-
Start Simple With Cover Crops
Cover crops are becoming the new ‘in’ thing for arable farmers, and more are trying them out, often without really knowing what they are doing. Seed merchants are getting in on the act, and there’s an increasing amount of conflicting advice out there. Farmers want a plan they can follow, and here is one for any practical farmer who wants to succeed with them.
Writes Mike Donovan in this article from @Practical Farm Ideas issue 24-4
Steve Townsend has been into soil management and cover cropping since leaving the Eco-tilling team in Monsanto in 1997 to start Soil First Farming which advises farmers on soil issues using a hands-on approach. Steve is also into liquid crop nutrients and has developed a number of formulations which help farmers achieve improvements in their crops. During his time with Monsanto he became an expert in glyphosate. As farmers across the globe moved to minimum and zero tillage methods, Monsanto found their Roundup sales doubling every four years.
Working with soil became more than a job and Steve devoured all that he could on the topic, in particular the books and records kept by pre-chemicals farmers. Soil, and it’s degradation, has an immensely long history, which goes back to the Romans and Egyptians – “did you know that the main grain port of the pharaohs, used in 1400BC, is now 30 miles inland? Silt, the best part of the soil, makes up that delta, as it has been piled up over the millennia.” The erosion and degradation continues today, with rivers in the UK and elsewhere carrying millions of tonnes of productive soil downstream
and into the seas each year.
Practical ‘can-do’ talk at the Real conference
This article is the result of Steve providing a scintillating 12 minute talk ‘Managing Cover Crops’ in the 2016 Oxford REAL Farm Conference. He has kindly shared his visuals with us. At the conference there was little time for pre-amble, but at our subsequent meeting there was time to set the scene. Soil enthusiasts are scattered across the globe. While the same broad message is common among all who understand how to protect, build and use soil advantageously, the detail from each is importantly different.To understand soils there’s a need to understand these variations, and since starting his business in 1998 Steve has travelled extensively, learning the techniques of soil conscious farmers in many countries. It’s experience he brings back home. So when we talk about docks in organic grassland, he suggests one looks at potash levels, in particular the phosphate P : K potash ratio. If there’s too much K, as there often is in parts of the South West and South Wales, the docks get out of control.
Soil carbon is the main factor for production in soil. Nutrients are less available when carbon declines. The decline in yield is inevitable. It can be held up by chemical intervention but this always needs to be increased in order to maintain yield. Carbon content is created from rotting organic matter, especially crop residues.
“Chopped straw is one of the best sources of soil carbon, and is far too valuable to be carted off to power stations. Left for worms, bacteria and fungi to break down, straw, together with the moisture we get, adds vital carbon to any soil.”
The spider’s web of soilThe structure and workings of any soil is as complex as a spider’s web. The different components interlock to make it work, and the whole is fragile.
Ploughing and cultivating damage the web, but are sometimes necessary in order to provide a structure for it to grow. Ploughing in Roman times was no more than a two or three inch scratch on the surface – something which enabled a seed to be covered over. Move forward a few centuries and the early mouldboard plough came along, and was a brilliant way to control weeds. These first ploughs worked to a depth of a few inches only. Horsepower was limited. With tractor power ploughs became wider, and therefore worked deeper, as the depth of the furrow is always around half the width. Digger bodies pulled up soil which had been sequestering carbon for hundreds of years. Exposed to sunlight and air the carbon deteriorated through oxidation, and when the power harrow came along the process was accelerated. Oxidation causes a major loss in soil carbon. With less carbon the soil is harder to work, so where once a light pass with the power harrow gave an onion bed, farmers were finding they had to do two passes to get an effective seedbed for corn.
Low cost winter feed which builds soil condition as well
Cover cropping seeds
Steve is emphatic on this – start simple. So you plan to grow a cover between harvest and a spring sown crop. That makes sense, as essentially farming is the art of capturing and using the sun’s energy, through photosynthesis. Bare soil, be it cultivated or stubble, captures no solar energy, but growing plants do. They grow roots, harvest nutrients from air and soil, and provide a habitat for microorganisms (as well as birds and insects).So he suggests starting with mustard, or leaving volunteer oilseed rape to grow. Success builds confidence, and you want to reduce the risk of failure. You don’t want to spend too much money, so start with inexpensive seed like mustard, so you can budget no more than £20/ha/ year on the first three cover cropping seasons. The mustard, linseed, oats or barley produce good root mass.
In years 3 – 6 go for high biomass plants, such as sunflowers, beans in addition to the mustard and so on. The budget could be £30/ha, but you are beginning to think there’s some sense in the system. After year six you can add plants with higher bio-diversity, but also higher seed prices. Vetches and clovers will add N but work better in soils which are inherently fertile.
There’s a big difference between species and variety of cover crop seeds. Go into a field of phacelia (which is not supposed to be frost hardy) during the winter and you’ll find some plants have been killed by the frost and others are doing fine. The seed was bought as ‘phacelia’, the species, so the bag contained a number of different varieties. We don’t buy cereals as ‘winter wheat’ but as ‘Claire’, so we need to know what variety we are buying.
Slug damage in turnips which were overseeded into wheat. The surviving turnips did well, but some parts were obliterated.
When to get the seed drill outThere’s a simple answer – as soon as possible. You need to organise the cover crop drilling to be done while the combine harvester is in full swing. The soil will still have moisture in it, enough to get your mustard off to a good start. Steve says “don’t think of overseeding to start with, as the risks are far greater than drilling. Remember, you want a crop.” As soil fertility improves, so broadcasting becomes a more reliable way to put these seeds on.
Spinning them out with a fertiliser spreader has problems. Mustard goes on at 10kg/ac and stubble turnips 3-7kg. Seed doesn’t travel the same way as fertiliser, and will find any narrow gap to escape being broadcast at all. Mixing with fertiliser makes the spreading rate easier, but the seed separates in the hopper. E_B from Norfolk explained on TheFarmingForum how he spins turnip seed on 2 – 3 weeks before harvest using a spreader that goes no further than 16m. His tramlines are 24m apart. As soon as the bales are off he fills in the gaps with the spinner. If it’s dry he drills the gaps with his Kverneland Evo tine drill, just scratching the surface.
Broadcast seeds grow very much better in fertile top soil which has been worked over by worms and other critters. Your first season top soil could be badly degraded. When those plants are small, look after them like any other crop. If there slug challenge, get some pellets out, and if they look poor, perk them with 15-30 kg/ha of N. Your aim is to have a good crop just the same as cash crop.The investment will pay off, because the next year it will grow better.
Cover crop destruction
Autumn sown covers that are to be terminated in the spring ideally should be sprayed with glyphosate the day of drilling. Moisture translocation stops 24 hours after spraying so it’s important rain doesn’t fall between spraying and drilling as the cover crop could become the perfect mulch stopping the soil from drying out.Maybe there’s a lot of grass weeds, and black grass. In which case spraying needs to happen early, by the end of January, to effect good control of these weeds.
A clean crop which is free of blackgrass might be grazed off, but not too hard, so the soil remains covered. Organic farmers and those who disapprove of glyphosate can consider the Rodale crimper roller which flattens and bruises the stems of most plants sufficiently to kill them off, though results have been few and mixed with this technique.
Sheep on oversown stubble turnips
How about grass and soil condition?
Once again, Steve says “look at the soil” and try to copy what happened in the world’s natural grasslands. Bison herds were constantly moving, eating the tops of grasses and moving on. Yet we like to graze the sward to an inch or two. We’re told to never let grass go to head – yet when cattle break into a hay field they dive at the seed heads. Grazing tightly causes swards to become open, need reseeding, as this grazing weakens the preferred species allowing less productive grasses to creep in.He’s seen mob grazing in the USA and understands the theory and results behind it. Grass and herbage build up biomass in an ‘S’ growth curve, which means a lot happens, or could happen, just after the conventional farmer grazes the sward off. Get the grazing controlled so the that spurt of growth, which includes the creation of the seedhead happens, and the quantity of material produced is far greater than when grazed conventionally. The sward must then be allowed to recover – the bison have moved on!
Close-up of the grazed field showing a worm ridden where they collect straw prior to dragging it down using holes they have made.
Back fencing is the most productive action in a strip grazing system. It takes little time to shift the fence. The back fence stops the stock from returning and snipping off the new shoots, which causes the plant roots to weaken. Those new shoots are fed by goodness from the roots. When the grass is short, the roots are also short.
As it gets longer and more mature, so energy is put into the rooting system so they grow bigger, allowing the grass to recover quicker from the energy in the bigger root mass. The best grasses are quickly damaged in swards which have no rest from grazing as the roots never have the time to recover. Weeds take over.
Grazed lightly, the sheep are moved on before they damage to soil. Waste makes essential biomass.
Steve refers to Prof William Albrecht who spent many years studying the best soils and who wrote many illuminating works on soil balancing. Andre Voison is another luminary, particularly in grass, rotational grazing and grass production. Soil is exciting material which farmers have almost been encouraged to neglect for too long.
-
Asda Soil Masters Bursary Visit US Farms
Asda arranged and funded a ‘Soil Masters’ tour of a number of US farms which have been in the forefront of no-till techniques. The main part of the bursary project was to explore the feasibility of combining arable and beef farming using a combination of no till farming practices which include all year round crop coverage and natural fertilisation with the purpose of regenerating the ever decreasing organic soil structure and matter of over farmed soils thus reducing the need of chemical fertilisers, pesticides and herbicides to ensure our farming practices have a sustainable future.
Written by Mike Donovan @Practical Farm IdeasThe Soil Masters group is a selected closed group of farmers and others with a specific interest in soil management. Steve Townsend of Soil First Farming said the trip was “mind blowing” for them all. Hearing how Joel Salatin had created seven inches of new soil on his land in just over 50 years (left to nature it takes 100 years to an an inch, while tillage farmers can lose nearly an inch a decade) by buying and getting hold of all sources of organic material to make carbon to build up what was a poor farm. Steve has not forgotten Joel’s remark “most farmers try to make their farms bigger, I try to make my farm deeper”.
The course was attended by 12 Asda arable no-till farmers, 7 Beeflink NSSSG farmers, was led by Pearce Hughes from Asda and occurred in 2015. Direct Driller is indebted to Mike Powley from York for the pictures.
Farm 1. Gabe & Paul Brown – Browns Ranch, Bismarck, North Dakota
The Brown ranch is located just east of Bismarck, ND. Gabe and his wife purchased the ranch in 1991 and have expanded the operation to 5000 acres of owned and leased land. Son, Paul, returned to the ranch after graduation from North Dakota State University and became a partner in the operation. Daughter, Kelly, lives and works in Fargo, ND and returns home to help whenever possible.The family believe in and practice Holistic Management, a part of which is farming and ranching in nature’s image. They strive to solve problems in a natural and sustainable way. Improving soil health is a priority and no-till farming has been practiced since 1993. A diverse cropping strategy, which includes cover and companion crops are used. They have now eliminated the use of synthetic fertilisers, fungicides and pesticides. They use minimal herbicides and is striving to eliminate them as well. This natural system of farming does not use GMOs or glyphosate.
The ever evolving grazing strategy allows most of their pastures a recovery period of over 360 days. These strategies have allowed the health of the soil, the mineral and water cycles to greatly improve. In other words, the natural resources have benefited. This results in increased production and profit and encourages the use of cattle production in precision arable farming. The Brown family believes their farming is a real way of moving towards sustainability for this and future generations, and increases the need for the use of cattle and mixed farming.
One of the main reasons for the Browns farming this way is to help improve the sales of his own boxed beef enterprise. He currently runs 350 late spring calving cows (all black) but with Hereford and British white genetics. The calves run with the cows for 11 months before being weaned. All the beef is grass fed with no cereal inclusion whatsoever and currently the animals are 26 months and 300kg deadweight at sale.
All cows are run as one mob and will run 10 bulls with the cows for a maximum of 42 days. The result is an average of just 8% of cows being empty, and 70% of his heifers were in calf after 30 days. Cows which are not in calf or which fail to raise a calf to 11 months were culled from herd. The cost of animal to slaughter cattle is $1086. The farm also includes sheep, chicken, pigs, and seed sales.
Farm 2. Jay Fuhrer – National Resource Conservation Service (NCRS) – Menoken Farm, North Dakota.
Jay has worked for the soil conservation arm of the USDA for over 30 years. In his first years he was dealing with land with a tendency to flood and his work was involved in planning and building irrigation ditches and dams. Today he sees this work as reacting to the issue rather than solving the problem.In the last 15 years he has become the the world’s leading resource on no till soil conservation agriculture. He now focuses on regenerative soil health typically bringing North Dakota soil from an organic matter of 2% to in-excess of 12% using holistic, pesticide free, fungicide free and herbicide free practices that promote soil regeneration. He achieves this by using increasing organic soil biology, soil armour made form crop residue left on the surface to create a water retentive soil structure and livestock fertilisation management.
The Soil Masters Bursary Group spent a morning carrying out practical hands on workshops that compared soil structure from the extreme of full tillage monoculture cropping with artificial nutrient and chemical usage to a natural biology fully diverse crop covering no tillage and livestock inclusion.
The workshops covered soil structure, organic content biology, chemistry and physical structure verses the effects wind water and heat.
The afternoon was spent exploring the trial soil fields of the facility understanding firstly the history of the Dakota’s and its soil structure. Starting with the native American plains and their biological history following through to their demise and the wiping out of the buffalo heard and the effect of converting pasture land to cropping land. With this move away from extensive grazing came the destruction of the soil health due to mass cropping and artificial nutrients inclusion which from the 1970’s.
Whilst mass cropping is still widely evident in the Dakotas, basically the soil is biologically dead and can now only be used with the use of artificial nutrients.
The government are now backing the conservationist’s to regenerate the farming lands of the North Dakota’s. The soil structure is being re-built with no till cover cropping and continual livestock grazing which is bringing back a soil that will continue to harvest crops for the foreseeable future.
Farm 3. Joel Salatin – Polyface Farms, Harrisonburg, V.A
In 1961, William and Lucille Salatin moved their young family to Virginia’s Shenandoah Valley, purchasing the most worn-out, eroded, abused farm in the area near Staunton. Using nature as a pattern, they and their children began the healing and innovation that now supports three generations.Disregarding conventional wisdom, the Salatins planted trees, built huge compost piles, dug ponds, moved cows daily with portable electric fencing, and invented portable sheltering systems to produce all their animals on perennial prairie polycultures.
Today the farm arguably represents America’s premier non-industrial food production oasis. Believing that the Creator’s design is still the best pattern for the biological world, the Salatin family invites like-minded people to join in the farm’s mission: to develop emotionally, economically, environmentally enhancing agricultural enterprises and facilitate their duplication throughout the world.
The Salatins continue to refine their models to push environmentallyfriendly farming practices toward new levels of expertise. Joel’s farm is currently 650 acres of which 480 acres are woodland the remainder is used for open farming land for multi stacking farming practices.
He currently employs 20 staff with an annual turnover of 4 million dollars he prides himself on maximising financial return per acre by multi stacking production enterprises that are symbiotic to the farm. Joel sells most of his products direct to the public on line with agreed collection points.
His main enterprises are salad bar beef, pasture fed chicken & rabbit, Acorn glen pork, pasture eggs, duck, vegetable growing, honey and timber products. Joel’s main focus area are grass and pasture utilisation.
Using the grass starts with the cattle mob grazing the pasture with electric fenced paddocks. This is closely followed by the egg mobile, having laying hens in an old horse box. The free range layers like eating the residue cow pies left from the cattle and help spread the manure further afield benefiting pasture recovery and soil health. After the laying hens have been over the pasture, the boiler chickens follow with their portable shelters moving to fresh pasture daily.
The system moves cattle on a daily basis and Joel aims to achieve 400 cattle grazing days per acre per annum. The Virginia state average is 80 cattle grazing days, making Joel’s system five times more than the average farmer in Virginia, yet at the same time he is benefiting soil and pasture land.
Joel’s cattle herd is 160 cows plus followers and he purchases 200 stirks a year. All of his production is slaughtered through his own abattoir and retailed through his on- line business.
During the winter a number of animals co habit in poly tunnels on a carbon based deep bedding system that will be utilised as compost on the rest of the farm after the winter period.
By focusing on carbon recycling and utilisation along with soil health Joel has managed to turn the farm from one of the poorest and least fertile into one of the most productive and regenerative farms in the USA. His soil organic matter was 1% in the 1960’s to in excess of 8% today as well as gaining over 10 inches of top soil.
Farm 4. McCormick Farm, Virginia Tech University, Harrisonburg, V.A.
The group had a late afternoon visit to McCormick farm owned by Virginia Tech University one of ten land based research units in the state. We were hosted by David Friske who showed us round this beef and forage based research centre. The unit was 1000 acres, holding 240 cow and calf pairs these are mostly Aberdeen Angus and Angus / Simmental cross.All of the offspring are finished on farm going through feeding trials using Calan gate feed recording system. The university is currently focusing on mob grazing verses set stocking and forage utilisation looking at improving farmer returns and efficiencies. The party went to see one specific trial of strip grazing cows and calves with hot wire induced movements and creep feeding. Due to the similarity in climate and production systems to the UK the group gained a lot from this it will be interesting to see the end results of this trial.
Farm 5. Mike Phillips United States Department of Agriculture (NRCS) – Valley View farm Harrisonburg V.A.
Mike farms with his wife on a 4th generation farm in Harrisonburg V.A. He currently runs 96 cow calf pairs that are a mixture of Angus and Angus cross and Hereford cross. All his cattle are sold to finishing feedlots at around 12 months old. Mike has operated a closed herd for 26 years with the exception of buying in breeding bulls.
All of the crops grown on Mike’s farm are used to feed the cattle operation. Mike has been using no till and cover crops for the last 15 years but the principles behind farm cropping dates back to his father’s generation. He has a unique and novel approach to cover crops and the varieties used, one field seen having 27 seed varieties growing at one time. He is a great believer of introducing cattle to new varieties of forage. Part of Mike’s land is loaned out to Virginia tech where agriculture PHD students are encouraged to trial rotational no till crop comparisons against conventional farming . The difference is measured by using basic biological physical and chemical markers for soil health.
Many thanks to Steve Townsend of Soil First Farming 01452 862696 and Mike Powley, Northern Farmer of the Year 2016 for their help in this report.